scispace - formally typeset
Search or ask a question
Author

Ronald E. Taam

Bio: Ronald E. Taam is an academic researcher from Northwestern University. The author has contributed to research in topics: Neutron star & Common envelope. The author has an hindex of 59, co-authored 290 publications receiving 12383 citations. Previous affiliations of Ronald E. Taam include Fu Jen Catholic University & National Tsing Hua University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the current best physical understanding of common envelope evolution (CEE) and highlight areas of consensus and disagreement, and stress ideas which should point the way forward for progress in this important but long-standing and largely unconquered problem.
Abstract: This work aims to present our current best physical understanding of common-envelope evolution (CEE). We highlight areas of consensus and disagreement, and stress ideas which should point the way forward for progress in this important but long-standing and largely unconquered problem. Unusually for CEE-related work, we mostly try to avoid relying on results from population synthesis or observations, in order to avoid potentially being misled by previous misunderstandings. As far as possible we debate all the relevant issues starting from physics alone, all the way from the evolution of the binary system immediately before CEE begins to the processes which might occur just after the ejection of the envelope. In particular, we include extensive discussion about the energy sources and sinks operating in CEE, and hence examine the foundations of the standard energy formalism. Special attention is also given to comparing the results of hydrodynamic simulations from different groups and to discussing the potential effect of initial conditions on the differences in the outcomes. We compare current numerical techniques for the problem of CEE and also whether more appropriate tools could and should be produced (including new formulations of computational hydrodynamics, and attempts to include 3D processes within 1D codes). Finally we explore new ways to link CEE with observations. We compare previous simulations of CEE to the recent outburst from V1309 Sco, and discuss to what extent post-common-envelope binaries and nebulae can provide information, e.g. from binary eccentricities, which is not currently being fully exploited.

869 citations

Journal ArticleDOI
TL;DR: StarTrack as mentioned in this paper is a popular population synthesis code for X-ray binary populations that can be used for a wide variety of problems, with relevance to observations with many current and planned observatories, e.g., studies of Xray binaries (Chandra, XMM-Newton), gravitational radiation sources (LIGO, LISA), and gamma-ray burst progenitors (HETE-II, Swift).
Abstract: We present a comprehensive description of the population synthesis code StarTrack. The original code has been significantly modified and updated. Special emphasis is placed here on processes leading to the formation and further evolution of compact objects (white dwarfs, neutron stars, and black holes). Both single and binary star populations are considered. The code now incorporates detailed calculations of all mass transfer phases, a full implementation of orbital evolution due to tides, as well as the most recent estimates of magnetic braking. This updated version of StarTrack can be used for a wide variety of problems, with relevance to observations with many current and planned observatories, e.g., studies of X-ray binaries (Chandra, XMM-Newton), gravitational radiation sources (LIGO, LISA), and gamma-ray burst progenitors (HETE-II, Swift). The code has already been used in studies of Galactic and extragalactic X-ray binary populations, black holes in young star clusters, Type Ia supernova progenitors, and double compact object populations. Here we describe in detail the input physics, we present the code calibration and tests, and we outline our current studies in the context of X-ray binary populations.

740 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the current best physical understanding of common envelope evolution (CEE) and highlight areas of consensus and disagreement, and stress ideas which should point the way forward for progress in this important but long-standing and largely unconquered problem.
Abstract: This work aims to present our current best physical understanding of common-envelope evolution (CEE). We highlight areas of consensus and disagreement, and stress ideas which should point the way forward for progress in this important but long-standing and largely unconquered problem. Unusually for CEE-related work, we mostly try to avoid relying on results from population synthesis or observations, in order to avoid potentially being misled by previous misunderstandings. As far as possible we debate all the relevant issues starting from physics alone, all the way from the evolution of the binary system immediately before CEE begins to the processes which might occur just after the ejection of the envelope. In particular, we include extensive discussion about the energy sources and sinks operating in CEE, and hence examine the foundations of the standard energy formalism. Special attention is also given to comparing the results of hydrodynamic simulations from different groups and to discussing the potential effect of initial conditions on the differences in the outcomes. We compare current numerical techniques for the problem of CEE and also whether more appropriate tools could and should be produced (including new formulations of computational hydrodynamics, and attempts to include 3D processes within 1D codes). Finally we explore new ways to link CEE with observations. We compare previous simulations of CEE to the recent outburst from V1309 Sco, and discuss to what extent post-common-envelope binaries and nebulae can provide information, e.g. from binary eccentricities, which is not currently being fully exploited.

652 citations

Journal ArticleDOI
TL;DR: In this paper, the common envelope phase of binary star evolution plays an essential role in the formation of short period systems containing a compact object, and significant mass and angular mass of a binary star can play an important role in this process.
Abstract: ▪ Abstract The common envelope phase of binary star evolution plays an essential role in the formation of short period systems containing a compact object. In this process, significant mass and ang...

300 citations


Cited by
More filters
Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
26 Apr 2013-Science
TL;DR: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass of 2 M☉
Abstract: Many physically motivated extensions to general relativity (GR) predict significant deviations at energies present in massive neutron stars. We report the measurement of a 2.01 \(\pm \) 0.04 solar mass (M\(_\odot \)) pulsar in a 2.46-h orbit around a 0.172 \(\pm \) 0.003 M\(_\odot \) white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detection experiments. Additionally, the system strengthens recent constraints on the properties of dense matter and provides novel insight to binary stellar astrophysics and pulsar recycling.

3,224 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1195 moreInstitutions (139)
TL;DR: In this paper, the authors used the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to constrain the difference between the speed of gravity and speed of light to be between $-3
Abstract: On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is $5.0\times {10}^{-8}$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $(+1.74\pm 0.05)\,{\rm{s}}$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $-3\times {10}^{-15}$ and $+7\times {10}^{-16}$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.

2,633 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott, T. D. Abbott, Sheelu Abraham  +1145 moreInstitutions (8)
TL;DR: In this paper, the authors presented the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma during the first and second observing runs of the advanced GW detector network.
Abstract: We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

2,336 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics, and focused on their post-helium-burning evolution.
Abstract: amount of energy, a tiny fraction of which is sufficient to explode the star as a supernova. The authors examine our current understanding of the lives and deaths of massive stars, with special attention to the relevant nuclear and stellar physics. Emphasis is placed upon their post-helium-burning evolution. Current views regarding the supernova explosion mechanism are reviewed, and the hydrodynamics of supernova shock propagation and ‘‘fallback’’ is discussed. The calculated neutron star masses, supernova light curves, and spectra from these model stars are shown to be consistent with observations. During all phases, particular attention is paid to the nucleosynthesis of heavy elements. Such stars are capable of producing, with few exceptions, the isotopes between mass 16 and 88 as well as a large fraction of still heavier elements made by the r and p processes.

1,981 citations