scispace - formally typeset
Search or ask a question
Author

Ronald J. Buta

Bio: Ronald J. Buta is an academic researcher from University of Alabama. The author has contributed to research in topics: Galaxy & Spiral galaxy. The author has an hindex of 47, co-authored 180 publications receiving 11824 citations. Previous affiliations of Ronald J. Buta include National Science Foundation & University of Texas at Austin.


Papers
More filters
Book ChapterDOI
01 Jan 1991
TL;DR: In this article, a reference catalogue of bright galaxies in three volumes reflects the explosive growth of extragalactic astronomy over the last 15 years and includes all galaxies with apparent diameters larger than one arc minute, magnitudes brighter than about magnitude 15.5, and redshifts not larger than 15,000 km/sec.
Abstract: This new, enlarged reference catalogue of bright galaxies in three volumes reflects the explosive growth of extragalactic astronomy over the last 15 years. With data on more than 23,000 galaxies, it includes all galaxies with apparent diameters larger than one arc minute, magnitudes brighter than about magnitude 15.5, and redshifts not larger than 15,000 km/sec, as well as many other objects of interest. Volume 1 contains the explanations and references; volumes 2 and 3 contain the catalogue proper. The catalogue gives for each galaxy, the position, names, type and luminosity class, optical diameters, optical and infrared magnitudes, various colour indices and radial velocities. The work also makes reference to papers on bright galaxies published between 1913 and 1988. This dictionary/encyclopaedia on stellar systems is intended for researchers in astronomy.

4,656 citations

Journal ArticleDOI
TL;DR: The Spitzer Survey of Stellar Structure in Galaxies (S^4G) as mentioned in this paper is a collection of 2331 galaxies using the Infrared Array Camera (IRAC) at 3.6 and 4.5 μm.
Abstract: The Spitzer Survey of Stellar Structure in Galaxies (S^4G) is an Exploration Science Legacy Program approved for the Spitzer post–cryogenic mission. It is a volume-, magnitude-, and size-limited (d < 40 Mpc, |b|> 30°,m_(Bcorr) 1') survey of 2331 galaxies using the Infrared Array Camera (IRAC) at 3.6 and 4.5 μm. Each galaxy is observed for 240 s and mapped to ≥ 1:5 × D_(25). The final mosaicked images have a typical 1 σ rms noise level of 0.0072 and 0:0093 MJy sr^-1 at 3.6 and 4.5 μm, respectively. Our azimuthally averaged surface brightness profile typically traces isophotes at μ_(3.6μm (AB)(1σ) ~ 27 mag arcsec^(-2), equivalent to a stellar mass surface density of ~1 M_⊙pc^(-2). S^4G thus provides an unprecedented data set for the study of the distribution of mass and stellar structures in the local universe. This large, unbiased, and extremely deep sample of all Hubble types from dwarfs to spirals to ellipticals will allow for detailed structural studies, not only as a function of stellar mass, but also as a function of the local environment. The data from this survey will serve as a vital testbed for cosmological simulations predicting the stellar mass properties of present-day galaxies. This article introduces the survey and describes the sample selection, the significance of the 3.6 and 4.5 μm bands for this study, and the data collection and survey strategies. We describe the S^4G data analysis pipeline and present measurements for a first set of galaxies, observed in both the cryogenic and warm mission phases of Spitzer. For every galaxy we tabulate the galaxy diameter, position angle, axial ratio, inclination at μ_(3.6μm)(AB) = 25:5, and 26:5 mag arcsec^(-2) (equivalent to ≈μ_B(AB) = 27:2 and 28:2 mag arcsec^(-2), respectively). These measurements will form the initial S^4G catalog of galaxy properties. We also measure the total magnitude and the azimuthally averaged radial profiles of ellipticity, position angle, surface brightness, and color. Finally, using the galaxy-fitting code GALFIT, we deconstruct each galaxy into its main constituent stellar components: the bulge/spheroid, disk, bar, and nuclear point source, where necessary. Together, these data products will provide a comprehensive and definitive catalog of stellar structures, mass, and properties of galaxies in the nearby universe and will enable a variety of scientific investigations, some of which are highlighted in this introductory S^4G survey paper.

557 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an atlas and classifications of S(4)G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system.
Abstract: The Spitzer Survey of Stellar Structure in Galaxies (S(4)G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S(4)G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence latetypes, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S(4)G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. The most common family classification for mid-IR types S0/a to Sc is SA while that for types Scd to Sm is SB. The bars in these two type domains are very different in mid-IR structure and morphology. This paper examines the bar, ring, and type classification fractions in the sample, and also includes several montages of images highlighting the various kinds of "stellar structures" seen in mid-IR galaxy morphology.

272 citations

Journal ArticleDOI
TL;DR: In this article, a new approach for estimating the 3.6 μm stellar mass-to-light (M/L) ratio Υ_3.6 was presented, which avoids several of the largest sources of uncertainty in existing techniques using population synthesis models.
Abstract: We present a new approach for estimating the 3.6 μm stellar mass-to-light (M/L) ratio Υ_3.6 in terms of the [3.6]-[4.5] colors of old stellar populations. Our approach avoids several of the largest sources of uncertainty in existing techniques using population synthesis models. By focusing on mid-IR wavelengths, we gain a virtually dust extinction-free tracer of the old stars, avoiding the need to adopt a dust model to correctly interpret optical or optical/near-IR colors normally leveraged to assign the mass-to-light ratio Upsilon. By calibrating a new relation between near-IR and mid-IR colors of giant stars observed in GLIMPSE we also avoid the discrepancies in model predictions for the [3.6]-[4.5] colors of old stellar populations due to uncertainties in the molecular line opacities assumed in template spectra. We find that the [3.6]-[4.5] color, which is driven primarily by metallicity, provides a tight constraint on Upsilon3.6, which varies intrinsically less than at optical wavelengths. The uncertainty on Υ3.6 of ~0.07 dex due to unconstrained age variations marks a significant improvement on existing techniques for estimating the stellar M/L with shorter wavelength data. A single Υ3.6 = 0.6 (assuming a Chabrier initial mass function (IMF)), independent of [3.6]-[4.5] color, is also feasible because it can be applied simultaneously to old, metal-rich and young, metal-poor populations, and still with comparable (or better) accuracy (~0.1 dex) than alternatives. We expect our Υ3.6 to be optimal for mapping the stellar mass distributions in S4G galaxies, for which we have developed an independent component analysis technique to first isolate the old stellar light at 3.6 μm from nonstellar emission (e.g., hot dust and the 3.3 polycyclic aromatic hydrocarbon feature). Our estimate can also be used to determine the fractional contribution of nonstellar emission to global (rest-frame) 3.6 μm fluxes, e.g., in WISE imaging, and establishes a reliable basis for exploring variations in the stellar IMF.

259 citations

Journal ArticleDOI
TL;DR: In this article, a two-dimensional multi-component decomposition was presented for 122 early-type disc galaxies, using deep K s -band images, for which the results support the view that spiral galaxies with bulges brighter than -20 mag in the K band can evolve directly into S0s.
Abstract: Photometric scaling relations are studied for S0 galaxies and compared with those obtained for spirals. New two-dimensional multi-component decompositions are presented for 122 early-type disc galaxies, using deep K s -band images. Combining them with our previous decompositions, the final sample consists of 175 galaxies (Near-Infrared Survey of S0s, NIRSOS: 117 SOs + 22 S0/a and 36 Sa galaxies). As a comparison sample we use the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) of nearly 200 spirals, for which similar multi-component decompositions have previously been made by us. The improved statistics, deep images and the homogeneous decomposition method used allow us to re-evaluate the parameters of the bulges and discs. For spirals we largely confirm previous results, which are compared with those obtained for S0s. Our main results are as follows. (1) Important scaling relations are present, indicating that the formative processes of bulges and discs in S0s are coupled [e.g. M 0 K (disc) = 0.63 M 0 K (bulge) -9.3], as has been found previously for spirals [for OSUBSGS spirals M 0 K (disc) = 0.38 M 0 K (bulge) -15.5; the rms deviation from these relations is 0.5 mag for S0s and spirals]. (2) We obtain median r eff /h 0 r ~ 0.20, 0.15 and 0.10 for S0, S0/a-Sa and Sab-Sc galaxies, respectively: these values are smaller than predicted by simulation models in which bulges are formed by galaxy mergers. (3) The properties of bulges of S0s are different from the elliptical galaxies, which are manifested in the M 0 K (bulge) versus r eff relation, in the photometric plane (μ 0 , n, reff ), and to some extent also in the Kormendy relation (〈μ〉 eff versus r eff ). The bulges of S0s are similar to bulges of spirals with M 0 K (bulge) < -20 mag. Some S0s have small bulges, but their properties are not compatible with the idea that they could evolve to dwarfs by galaxy harassment. (4) The relative bulge flux (B/T) for S0s covers the full range found in the Hubble sequence, even with 13 per cent having B/T < 0.15, typical for late-type spirals. (5) The values and relations of the parameters of the discs [h 0 r , M 0 K (disc), μ 0 (0)] of the S0 galaxies in NIRS0S are similar to those obtained for spirals in the OSUBSGS. Overall, our results support the view that spiral galaxies with bulges brighter than -20 mag in the K band can evolve directly into S0s, due to stripping of gas followed by truncated star formation.

238 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed, is presented.
Abstract: We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 ± 13 nW m-2 sr-1 at 140 μm and of 17 ± 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law and use the colors of elliptical galaxies to measure the reddening per unit flux density of 100 μm emission. We find consistent calibration using the B-R color distribution of a sample of the 106 brightest cluster ellipticals, as well as a sample of 384 ellipticals with B-V and Mg line strength measurements. For the latter sample, we use the correlation of intrinsic B-V versus Mg2 index to tighten the power of the test greatly. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates cosmic microwave background radiation experiments and for estimating soft X-ray absorption. We describe how to access our maps readily for general use.

15,988 citations

Journal ArticleDOI
TL;DR: The SExtractor ( Source Extractor) as mentioned in this paper is an automated software that optimally detects, deblends, measures and classifies sources from astronomical images, which is particularly suited to the analysis of large extragalactic surveys.
Abstract: We present the automated techniques we have developed for new software that optimally detects, deblends, measures and classifies sources from astronomical images: SExtractor ( Source Extractor ). We show that a very reliable star/galaxy separation can be achieved on most images using a neural network trained with simulated images. Salient features of SExtractor include its ability to work on very large images, with minimal human intervention, and to deal with a wide variety of object shapes and magnitudes. It is therefore particularly suited to the analysis of large extragalactic surveys.

10,983 citations

Journal ArticleDOI
TL;DR: In this article, far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT is presented.
Abstract: We present far-infrared (FIR) photometry at 150 and 205 micron(s) of eight low-redshift starburst galaxies obtained with the Infrared Space Observatory (ISO) ISOPHOT. Five of the eight galaxies are detected in both wave bands, and these data are used, in conjunction with IRAS archival photometry, to model the dust emission at lambda approximately greater than 40 microns. The FIR spectral energy distributions (SEDs) are best fitted by a combination of two modified Planck functions, with T approx. 40 - 55 K (warm dust) and T approx. 20-23 K (cool dust) and with a dust emissivity index epsilon = 2. The cool dust can be a major contributor to the FIR emission of starburst galaxies, representing up to 60% of the total flux. This component is heated not only by the general interstellar radiation field, but also by the starburst itself. The cool dust mass is up to approx. 150 times larger than the warm dust mass, bringing the gas-to-dust ratios of the starbursts in our sample close to Milky Way values, once resealed for the appropriate metallicity. The ratio between the total dust FIR emission in the range 1-1000 microns and the IRAS FIR emission in the range 40 - 120 microns is approx. 1.75, with small variations from galaxy to galaxy. This ratio is about 40% larger than previously inferred from data at millimeter wavelengths. Although the galaxies in our sample are generally classified as "UV bright," for four of them the UV energy emerging shortward of 0.2 microns is less than 15% of the FIR energy. On average, about 30% of the bolometric flux is coming out in the UV-to-near-IR wavelength range; the rest is emitted in the FIR. Energy balance calculations show that the FIR emission predicted by the dust reddening of the UV-to-near-IR stellar emission is within a factor of approx. 2 of the observed value in individual galaxies and within 20% when averaged over a large sample. If our sample of local starbursts is representative of high-redshift (z approx. greater than 1), UV - bright star-forming galaxies, these galaxies' FIR emission will be generally undetected in submillimeter surveys, unless: (1) their bolometric luminosity is comparable to or larger than that of ultraluminous FIR galaxies and (2) their FIR SED contains a cool dust component.

5,255 citations

Journal ArticleDOI
TL;DR: Locally weighted regression as discussed by the authors is a way of estimating a regression surface through a multivariate smoothing procedure, fitting a function of the independent variables locally and in a moving fashion analogous to how a moving average is computed for a time series.
Abstract: Locally weighted regression, or loess, is a way of estimating a regression surface through a multivariate smoothing procedure, fitting a function of the independent variables locally and in a moving fashion analogous to how a moving average is computed for a time series With local fitting we can estimate a much wider class of regression surfaces than with the usual classes of parametric functions, such as polynomials The goal of this article is to show, through applications, how loess can be used for three purposes: data exploration, diagnostic checking of parametric models, and providing a nonparametric regression surface Along the way, the following methodology is introduced: (a) a multivariate smoothing procedure that is an extension of univariate locally weighted regression; (b) statistical procedures that are analogous to those used in the least-squares fitting of parametric functions; (c) several graphical methods that are useful tools for understanding loess estimates and checking the a

5,188 citations

Journal ArticleDOI
TL;DR: The mass of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05.
Abstract: The masses of supermassive black holes correlate almost perfectly with the velocity dispersions of their host bulges, Mbh ∝ σα, where α = 48 ± 05 The relation is much tighter than the relation between Mbh and bulge luminosity, with a scatter no larger than expected on the basis of measurement error alone Black hole masses recently estimated by Magorrian et al lie systematically above the Mbh-σ relation defined by more accurate mass estimates, some by as much as 2 orders of magnitude The tightness of the Mbh-σ relation implies a strong link between black hole formation and the properties of the stellar bulge

4,557 citations