scispace - formally typeset
Search or ask a question
Author

Ronald L. Malcolm

Bio: Ronald L. Malcolm is an academic researcher from United States Geological Survey. The author has contributed to research in topics: Humic acid & Organic matter. The author has an hindex of 26, co-authored 36 publications receiving 7034 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The drop impact sampler developed by the Bureau of Mines is based on the stain technique for measuring airborne drops and makes it possible to determine rates of depositions and spatial concentrations.
Abstract: The drop impact sampler developed by the Bureau of Mines is based on the stain technique for measuring airborne drops. The stain technique requires a calibration curve to relate stain and drop diameters a t a known impact velocity, usually the terminal value. However, physical constraints limit sampler location, making it difficult to attain the terminal value and thereby introducing complications; extrapolation of a calibration curve based on the spherical quiescent model to large drops results in an erroneously large diameter. The new sampler eliminates these difficulties and in addition makes it possible to determine rates of depositions and spatial concentrations. The sampler can measure drop diameters ranging from 0.005 to 2.5 mm and is suitable for water sprays, raindrops, and carry-over drops such as from cooling towers. Laboratory tests have shown that the sampler is reliable, rugged, lightweight, and easy to use.

1,484 citations

Journal ArticleDOI
TL;DR: Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides.
Abstract: Water solubility enhancements by dissolved humic and fulvic acids from soil and aquatic origins and by synthetic organic polymers have been determined for selected organic pollutants and pesticides (p,p'-DDT,2,4,5,2',5'-PCB, 2,4,4'-PCB, 1,2,3,-trichlorobenzene, and lindane). Significant solubility enhancements of relatively water-insoluble solutes by dissolved organic matter (DOM) of soil and aquatic origins may be described in terms of a partition-like interaction of the solutes with the microscopic organic environment of the high-molecular-weight DOM species; the apparent solute solubilities increase linearly with DOM concentration and show no competitive effect between solutes. The K/sub dom/ values of solutes with soil-derived humic acid are approximately 4 times greater than with soil fulvic acid and 5-7 times greater than with aquatic humic and fulvic acids. The effectiveness of DOM in enhancing solute solubility appears to be largely controlled by the DOM molecular size and polarity. The relative inability of high-molecular-weight poly(acrylic acids) to enhance solute solubility is attributed to their high polarities and extended chain structures that do not permit the formation of a sizable intramolecular nonpolar environment. 41 references, 6 figures, 3 tables.

971 citations

Journal ArticleDOI
TL;DR: In this paper, a statistical model was proposed for activated aromatic content based on {sup 13}C NMR and base titration data and the values estimated from this model were found to be well correlated with chlorine consumption.
Abstract: Ten aquatic humic and fulvic acids were isolated and studied with respect to their reaction with chlorine. Yields of TOX, chloroform, trichloroacetic acid, dichloroacetic acid, dichloroacetonitrile, and 1,1,1-trichloropropanone were measured at pH 7 and 12. Humic acids produced higher concentrations than their corresponding fulvic acids of all byproducts except 1,1,1-trichloropropanone. Chlorine consumption and byproduct formation were related to fundamental chemical characteristics of the humic materials. A statistical model was proposed for activated aromatic content based on {sup 13}C NMR and base titration data. The values estimated from this model were found to be well correlated with chlorine consumption. Specific by-product formation was related to UV absorbance, nitrogen content, or the activated aromatic content.

659 citations

Journal ArticleDOI
TL;DR: In this article, an operationally defined carboxyl content of humic substances extracted from rivers, streams, lakes, wetlands, and groundwaters throughout the United States and Canada is reported.

530 citations

Journal ArticleDOI
TL;DR: In this paper, the compositional differences between fulvic acids and humic acids from soil, stream and marine environments by five different methods (1H and 13C NMR spectroscopy, 14C age and δ13C isotopic analyses, amino acid analyses, pyrolysis-mass spectrometry).

381 citations


Cited by
More filters
Book
01 Jun 1989
TL;DR: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities.
Abstract: The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater. The ways in which solutes are taken up or precipitated and the amounts present in solution are influenced by many environmental factors, especially climate, structure and position of rock strata, and biochemical effects associated with life cycles of plants and animals, both microscopic and macroscopic. Taken together and in application with the further influence of the general circulation of all water in the hydrologic cycle, the chemical principles and environmental factors form a basis for the developing science of natural-water chemistry. Fundamental data used in the determination of water quality are obtained by the chemical analysis of water samples in the laboratory or onsite sensing of chemical properties in the field. Sampling is complicated by changes in the composition of moving water and by the effects of particulate suspended material. Some constituents are unstable and require onsite determination or sample preservation. Most of the constituents determined are reported in gravimetric units, usually milligrams per liter or milliequivalents

6,271 citations

Journal ArticleDOI
TL;DR: Data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments and is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems.
Abstract: Specific UV absorbance (SUVA) is defined as the UV absorbance of a water sample at a given wavelength normalized for dissolved organic carbon (DOC) concentration. Our data indicate that SUVA, determined at 254 nm, is strongly correlated with percent aromaticity as determined by 13C NMR for 13 organic matter isolates obtained from a variety of aquatic environments. SUVA, therefore, is shown to be a useful parameter for estimating the dissolved aromatic carbon content in aquatic systems. Experiments involving the reactivity of DOC with chlorine and tetra- methylammonium hydroxide (TMAH), however, show a wide range of reactivity for samples with similar SUVA values. These results indicate that, while SUVA measurements are good predictors of general chemical characteristics of DOC, they do not provide information about reactivity of DOC derived from different types of source materials. Sample pH, nitrate, and iron were found to influence SUVA measurements.

3,618 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations

Book
01 Jan 1985
TL;DR: The first part of the book as mentioned in this paper is a general overview of the amount and general nature of dissolved organic carbon in natural waters, and the second part is a summary of the data that has accumulated from many disciplines over the last decade.
Abstract: This book is written as a reference on organic substances in natural waters and as a supplementary text for graduate students in water chemistry. The chapters address five topics: amount, origin, nature, geochemistry, and characterization of organic carbon. Of these topics, the main themes are the amount and nature of dissolved organic carbon in natural waters (mainly fresh water, although seawater is briefly discussed). It is hoped that the reader is familiar with organic chemistry, but it is not necessary. The first part of the book is a general overview of the amount and general nature of dissolved organic carbon. Over the past 10 years there has been an exponential increase in knowledge on organic substances in water, which is the result of money directed toward the research of organic compounds, of new methods of analysis (such as gas chromatography and mass spectrometry), and most importantly, the result of more people working in this field. Because of this exponential increase in knowledge, there is a need to pull together and summarize the data that has accumulated from many disciplines over the last decade.

2,803 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the fluorescence properties of fulvic acids isolated from streams and rivers receiving predominantly terrestrial sources of organic material and from lakes with microbial sources, and showed that the ratio of the emission intensity at a wavelength of 450 nm to that at 500 nm, obtained with an excitation of 370 nm, can serve as a simple index to distinguish sources of isolated aquatic fulvic acid.
Abstract: We studied the fluorescence properties of fulvic acids isolated from streams and rivers receiving predominantly terrestrial sources of organic material and from lakes with microbial sources of organic material. Microbially derived fulvic acids have fluorophores with a more sharply defined emission peak occurring at lower wavelengths than fluorophores in terrestrially derived fulvic acids. We show that the ratio of the emission intensity at a wavelength of 450 nm to that at 500 nm, obtained with an excitation of 370 nm, can serve as a simple index to distinguish sources of isolated aquatic fulvic acids. In our study, this index has a value of ;1.9 for microbially derived fulvic acids and a value of ;1.4 for terrestrially derived fulvic acids. Fulvic acids isolated from four large rivers in the United States have fluorescence index values of 1.4‐1.5, consistent with predominantly terrestrial sources. For fulvic acid samples isolated from a river, lakes, and groundwaters in a forested watershed, the fluorescence index varied in a manner suggesting different sources for the seepage and streamfed lakes. Furthermore, we identified these distinctive fluorophores in filtered whole water samples from lakes in a desert oasis in Antarctica and in filtered whole water samples collected during snowmelt from a Rocky Mountain stream. The fluorescence index measurement in filtered whole water samples in field studies may augment the interpretation of dissolved organic carbon sources for understanding carbon cycling in aquatic ecosystems.

2,428 citations