scispace - formally typeset
Search or ask a question
Author

Ronald R. Yager

Bio: Ronald R. Yager is an academic researcher from Iona College. The author has contributed to research in topics: Fuzzy logic & Fuzzy set. The author has an hindex of 110, co-authored 931 publications receiving 64452 citations. Previous affiliations of Ronald R. Yager include King Saud University & King Abdulaziz University.


Papers
More filters
Journal ArticleDOI
Ronald R. Yager1
03 Jan 1988
TL;DR: A type of operator for aggregation called an ordered weighted aggregation (OWA) operator is introduced and its performance is found to be between those obtained using the AND operator and the OR operator.
Abstract: The author is primarily concerned with the problem of aggregating multicriteria to form an overall decision function. He introduces a type of operator for aggregation called an ordered weighted aggregation (OWA) operator and investigates the properties of this operator. The OWA's performance is found to be between those obtained using the AND operator, which requires all criteria to be satisfied, and the OR operator, which requires at least one criteria to be satisfied. >

6,534 citations

Journal ArticleDOI
TL;DR: This paper develops some new geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionists fuzzy ordered weighted geometric(IFOWG)operator, and the intuitionism fuzzy hybrid geometric (ifHG) operators, which extend the WG and OWG operators to accommodate the environment in which the given arguments are intuitionistic fuzz sets.
Abstract: The weighted geometric (WG) operator and the ordered weighted geometric (OWG) operator are two common aggregation operators in the field of information fusion. But these two aggregation operators are usually used in situations where the given arguments are expressed as crisp numbers or linguistic values. In this paper, we develop some new geometric aggregation operators, such as the intuitionistic fuzzy weighted geometric (IFWG) operator, the intuitionistic fuzzy ordered weighted geometric (IFOWG) operator, and the intuitionistic fuzzy hybrid geometric (IFHG) operator, which extend the WG and OWG operators to accommodate the environment in which the given arguments are intuitionistic fuzzy sets which are characterized by a membership function and a non-membership function. Some numerical examples are given to illustrate the developed operators. Finally, we give an application of the IFHG operator to multiple attribute decision making based on intuitionistic fuzzy sets.

1,928 citations

Journal ArticleDOI
Ronald R. Yager1
TL;DR: The issue of having to choose a best alternative in multicriteria decision making leads the problem of comparing Pythagorean membership grades to be considered, and a variety of aggregation operations are introduced for these Pythagorian fuzzy subsets.
Abstract: We first look at some nonstandard fuzzy sets, intuitionistic, and interval-valued fuzzy sets. We note both these allow a degree of commitment of less then one in assigning membership. We look at the formulation of the negation for these sets and show its expression in terms of the standard complement with respect to the degree of commitment. We then consider the complement operation. We describe its properties and look at alternative definitions of complement operations. We then focus on the Pythagorean complement. Using this complement, we introduce a class of nonstandard Pythagorean fuzzy subsets whose membership grades are pairs, (a, b) satisfying the requirement a 2 + b 2 ≤ 1. We introduce a variety of aggregation operations for these Pythagorean fuzzy subsets. We then look at multicriteria decision making in the case where the criteria satisfaction are expressed using Pythagorean membership grades. The issue of having to choose a best alternative in multicriteria decision making leads us to consider the problem of comparing Pythagorean membership grades.

1,706 citations

Book
01 Jan 1994
TL;DR: Essentials of Fuzzy Modeling and Control follows a logical, pedagogically consistent format designed to fully acquaint readers with the entire range of fuzzy concepts, tools, and modeling techniques.
Abstract: From the Publisher: At last, here is a thorough introduction that offers complete coverage of all relevant theory and applications to the rapidly evolving field of fuzzy logic While most other books on the subject tend to be loose collections of papers reporting on the state of this or that fuzzy area, Essentials of Fuzzy Modeling and Control follows a logical, pedagogically consistent format designed to fully acquaint readers with the entire range of fuzzy concepts, tools, and modeling techniques While it is an excellent general introduction for students, the authors' ultimate goal is to give researchers an opportunity to acquire everything they need to build the kinds of fuzzy rule-based models used in the development of the controllers now being constructed for the next generation of intelligent systems

1,678 citations


Cited by
More filters
Book
08 Sep 2000
TL;DR: This book presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects, and provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data.
Abstract: The increasing volume of data in modern business and science calls for more complex and sophisticated tools. Although advances in data mining technology have made extensive data collection much easier, it's still always evolving and there is a constant need for new techniques and tools that can help us transform this data into useful information and knowledge. Since the previous edition's publication, great advances have been made in the field of data mining. Not only does the third of edition of Data Mining: Concepts and Techniques continue the tradition of equipping you with an understanding and application of the theory and practice of discovering patterns hidden in large data sets, it also focuses on new, important topics in the field: data warehouses and data cube technology, mining stream, mining social networks, and mining spatial, multimedia and other complex data. Each chapter is a stand-alone guide to a critical topic, presenting proven algorithms and sound implementations ready to be used directly or with strategic modification against live data. This is the resource you need if you want to apply today's most powerful data mining techniques to meet real business challenges. * Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects. * Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields. *Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of real business data

23,600 citations

Book
01 Jan 1988
TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Abstract: From the Publisher: Probabilistic Reasoning in Intelligent Systems is a complete andaccessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty—and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition—in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information. Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.

15,671 citations

Book
31 Jul 1981
TL;DR: Books, as a source that may involve the facts, opinion, literature, religion, and many others are the great friends to join with, becomes what you need to get.
Abstract: New updated! The latest book from a very famous author finally comes out. Book of pattern recognition with fuzzy objective function algorithms, as an amazing reference becomes what you need to get. What's for is this book? Are you still thinking for what the book is? Well, this is what you probably will get. You should have made proper choices for your better life. Book, as a source that may involve the facts, opinion, literature, religion, and many others are the great friends to join with.

15,662 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations