scispace - formally typeset
Search or ask a question
Author

Ronald Redmer

Bio: Ronald Redmer is an academic researcher from University of Rostock. The author has contributed to research in topics: Plasma & Scattering. The author has an hindex of 54, co-authored 337 publications receiving 12091 citations. Previous affiliations of Ronald Redmer include Russian Academy of Sciences & Sandia National Laboratories.


Papers
More filters
Journal ArticleDOI
TL;DR: The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 sec readout cadence and 2 with 2.5 sec candence) providing a wide field-of-view (2232 deg2) and a large photometric magnitude range (4-16 mag) as discussed by the authors.
Abstract: PLATO 2.0 has recently been selected for ESA's M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 sec readout cadence and 2 with 2.5 sec candence) providing a wide field-of-view (2232 deg2) and a large photometric magnitude range (4-16 mag). It focusses on bright (4-11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2%, 4-10% and 10% for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2-3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50% of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0.

1,004 citations

Journal ArticleDOI
Heike Rauer1, Heike Rauer2, C. Catala3, Conny Aerts4  +164 moreInstitutions (51)
TL;DR: The PLATO 2.0 mission as discussed by the authors has been selected for ESA's M3 launch opportunity (2022/24) to provide accurate key planet parameters (radius, mass, density and age) in statistical numbers.
Abstract: PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

965 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas for applications in high energy density physics, including inertial confinement fusion, material science, or laboratory astrophysics.
Abstract: Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion,more » radiation hydrodynamics, material science, or laboratory astrophysics.« less

612 citations

Journal ArticleDOI
TL;DR: The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density.
Abstract: We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

397 citations

05 Sep 2006
TL;DR: In this article, the collective x-ray scattering measurements of plasmons in solid-density plasmas were presented, showing that the plasmon frequency is a sensitive measure of the electron density.
Abstract: We present the first collective x-ray scattering measurements of plasmons in solid-density plasmas. The forward scattering spectra of a laser-produced narrow-band x-ray line from isochorically heated beryllium show that the plasmon frequency is a sensitive measure of the electron density. Dynamic structure calculations that include collisions and detailed balance match the measured plasmon spectrum indicating that this technique will enable new applications to determine the equation of state and compressibility of dense matter.

344 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way, is presented, and a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z ǫ = 0.014, spanning a wide mass range from 0.8 to 120 m ⊙.
Abstract: Aims. Many topical astrophysical research areas, such as the properties of planet host stars, the nature of the progenitors of different types of supernovae and gamma ray bursts, and the evolution of galaxies, require complete and homogeneous sets of stellar models at different metallicities in order to be studied during the whole of cosmic history. We present here a first set of models for solar metallicity, where the effects of rotation are accounted for in a homogeneous way.Methods. We computed a grid of 48 different stellar evolutionary tracks, both rotating and non-rotating, at Z = 0.014, spanning a wide mass range from 0.8 to 120 M ⊙ . For each of the stellar masses considered, electronic tables provide data for 400 stages along the evolutionary track and at each stage, a set of 43 physical data are given. These grids thus provide an extensive and detailed data basis for comparisons with the observations. The rotating models start on the zero-age main sequence (ZAMS) with a rotation rate υ ini /υ crit = 0.4. The evolution is computed until the end of the central carbon-burning phase, the early asymptotic giant branch (AGB) phase, or the core helium-flash for, respectively, the massive, intermediate, and both low and very low mass stars. The initial abundances are those deduced by Asplund and collaborators, which best fit the observed abundances of massive stars in the solar neighbourhood. We update both the opacities and nuclear reaction rates, and introduce new prescriptions for the mass-loss rates as stars approach the Eddington and/or the critical velocity. We account for both atomic diffusion and magnetic braking in our low-mass star models.Results. The present rotating models provide a good description of the average evolution of non-interacting stars. In particular, they reproduce the observed main-sequence width, the positions of the red giant and supergiant stars in the Hertzsprung-Russell (HR) diagram, the observed surface compositions and rotational velocities. Very interestingly, the enhancement of the mass loss during the red-supergiant stage, when the luminosity becomes supra-Eddington in some outer layers, help models above 15−20 M ⊙ to lose a significant part of their hydrogen envelope and evolve back into the blue part of the HR diagram. This result has interesting consequences for the blue to red supergiant ratio, the minimum mass for stars to become Wolf-Rayet stars, and the maximum initial mass of stars that explode as type II−P supernovae.

1,654 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars.
Abstract: We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R_⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R_p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R_*/a. We consider first Kepler target stars within the "solar subset" having T_eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude K_p 2 R_⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R_⊕, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T_eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R_⊕ planets in the Kepler field increases with decreasing T_eff, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).

1,159 citations

Journal ArticleDOI
TL;DR: In this article, the authors report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars.
Abstract: We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]

1,134 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive review of the state-of-the-art research activities related to ZnS nanostructures is provided, with the focus on the critical experiments determining the electrical, chemical and physical parameters of the nanostructure, and the interplay between synthetic conditions and nanoscale morphologies.

1,090 citations