scispace - formally typeset
Search or ask a question
Author

Ronald Strohmeyer

Bio: Ronald Strohmeyer is an academic researcher. The author has contributed to research in topics: Inflammation & Alzheimer's disease. The author has an hindex of 4, co-authored 6 publications receiving 4190 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
TL;DR: In vitro and in situ evidence is presented that, like amyloid beta peptide (Abeta), tau, the major protein constituent of the neurofibrillary tangle, is a potent, antibody-independent activator of the classical complement pathway.

164 citations

Journal ArticleDOI
TL;DR: It is suggested that concurrent NSAID administration might serve as a useful adjunct to Aβ immunization, permitting unfettered clearance of Aβ while dampening secondary, inflammation-related adverse events.
Abstract: Background Recent studies have suggested that passive or active immunization with anti-amyloid β peptide (Aβ) antibodies may enhance microglial clearance of Aβ deposits from the brain. However, in a human clinical trial, several patients developed secondary inflammatory responses in brain that were sufficient to halt the study.

28 citations

Book ChapterDOI
01 Jan 2002
TL;DR: Particularly in the context of innate inflammatory mechanisms, microglia appear to play important roles in a wide range of neurodegenerative diseases, including multiple sclerosis, Parkinson’s disease, and human immunodeficiency virus-associated dementia.
Abstract: Particularly in the context of innate inflammatory mechanisms, micro-glia appear to play important roles in a wide range of neurodegenerative diseases, including multiple sclerosis, Parkinson’s disease, and human immunodeficiency virus (HIV)-associated dementia (reviewed in Banati et al. 1993; Dickson et al. 1993; McGeer et al. 1993). It should not be surprising, then, that microglial activation has been found to be a crucial event mediating inflammatory responses in Alzheimer’s disease (AD) (reviewed in Neuroinflammation Working Group 2000).

20 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
16 Jul 2015-Nature
TL;DR: In searching for T-cell gateways into and out of the meninges, functional lymphatic vessels lining the dural sinuses are discovered, which may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
Abstract: One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

2,897 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: There is evidence for a remarkable convergence in the mechanisms responsible for the sensing, transduction, and amplification of inflammatory processes that result in the production of neurotoxic mediators in neurodegenerative diseases.

2,838 citations

Journal ArticleDOI
TL;DR: 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloids plaque formation.
Abstract: Mutations in the genes for amyloid precursor protein (APP) and presenilins (PS1, PS2) increase production of β-amyloid 42 (Aβ42) and cause familial Alzheimer's disease (FAD). Transgenic mice that express FAD mutant APP and PS1 overproduce Aβ42 and exhibit amyloid plaque pathology similar to that found in AD, but most transgenic models develop plaques slowly. To accelerate plaque development and investigate the effects of very high cerebral Aβ42 levels, we generated APP/PS1 double transgenic mice that coexpress five FAD mutations (5XFAD mice) and additively increase Aβ42 production. 5XFAD mice generate Aβ42 almost exclusively and rapidly accumulate massive cerebral Aβ42 levels. Amyloid deposition (and gliosis) begins at 2 months and reaches a very large burden, especially in subiculum and deep cortical layers. Intraneuronal Aβ42 accumulates in 5XFAD brain starting at 1.5 months of age (before plaques form), is aggregated (as determined by thioflavin S staining), and occurs within neuron soma and neurites. Some amyloid deposits originate within morphologically abnormal neuron soma that contain intraneuronal Aβ. Synaptic markers synaptophysin, syntaxin, and postsynaptic density-95 decrease with age in 5XFAD brain, and large pyramidal neurons in cortical layer 5 and subiculum are lost. In addition, levels of the activation subunit of cyclin-dependent kinase 5, p25, are elevated significantly at 9 months in 5XFAD brain, although an upward trend is observed by 3 months of age, before significant neurodegeneration or neuron loss. Finally, 5XFAD mice have impaired memory in the Y-maze. Thus, 5XFAD mice rapidly recapitulate major features of AD amyloid pathology and may be useful models of intraneuronal Aβ42-induced neurodegeneration and amyloid plaque formation.

2,471 citations