scispace - formally typeset
Search or ask a question
Author

Ronald T. Raines

Bio: Ronald T. Raines is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: RNase P & Ribonuclease. The author has an hindex of 90, co-authored 523 publications receiving 31276 citations. Previous affiliations of Ronald T. Raines include Wisconsin Alumni Research Foundation & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The fibrillar structure of type I collagen-the prototypical collagen fibril-has been revealed in detail and will guide further development of artificial collagenous materials for biomedicine and nanotechnology.
Abstract: Collagen is the most abundant protein in animals. This fibrous, structural protein comprises a right-handed bundle of three parallel, left-handed polyproline II-type helices. Much progress has been made in elucidating the structure of collagen triple helices and the physicochemical basis for their stability. New evidence demonstrates that stereoelectronic effects and preorganization play a key role in that stability. The fibrillar structure of type I collagen—the prototypical collagen fibril—has been revealed in detail. Artificial collagen fibrils that display some properties of natural collagen fibrils are now accessible using chemical synthesis and self-assembly. A rapidly emerging understanding of the mechanical and structural properties of native collagen fibrils will guide further development of artificial collagenous materials for biomedicine and nanotechnology.

2,742 citations

Journal ArticleDOI
TL;DR: It is reported that N,N-dimethylacetamide containing lithium chloride (LiCl) is a privileged solvent that enables the synthesis of the renewable platform chemical 5-hydroxymethylfurfural (HMF) in a single step and unprecedented yield from untreated lignocellulosic biomass, as well as from purified cellulose, glucose, and fructose.
Abstract: Lignocellulosic biomass is a plentiful and renewable resource for fuels and chemicals. Despite this potential, nearly all renewable fuels and chemicals are now produced from edible resources, such as starch, sugars, and oils; the challenges imposed by notoriously recalcitrant and heterogeneous lignocellulosic feedstocks have made their production from nonfood biomass inefficient and uneconomical. Here, we report that N,N-dimethylacetamide (DMA) containing lithium chloride (LiCl) is a privileged solvent that enables the synthesis of the renewable platform chemical 5-hydroxymethylfurfural (HMF) in a single step and unprecedented yield from untreated lignocellulosic biomass, as well as from purified cellulose, glucose, and fructose. The conversion of cellulose into HMF is unabated by the presence of other biomass components, such as lignin and protein. Mechanistic analyses reveal that loosely ion-paired halide ions in DMA−LiCl are critical for the remarkable rapidity (1−5 h) and yield (up to 92%) of this low...

1,398 citations

Journal ArticleDOI
TL;DR: The chemical and photophysical properties of oft-used fluorophores are examined and classic and contemporary examples in which utility has been built upon these scaffolds are highlighted.
Abstract: Small-molecule fluorescent probes embody an essential facet of chemical biology. Although numerous compounds are known, the ensemble of fluorescent probes is based on a modest collection of modular “core” dyes. The elaboration of these dyes with diverse chemical moieties is enabling the precise interrogation of biochemical and biological systems. The importance of fluorescence-based technologies in chemical biology elicits a necessity to understand the major classes of small-molecule fluorophores. Here, we examine the chemical and photophysical properties of oft-used fluorophores and highlight classic and contemporary examples in which utility has been built upon these scaffolds.

1,086 citations

Journal ArticleDOI
TL;DR: The hydrolytic stability of isostructural hydrazones and an oxime have been determined at pD 5.0–9.0, suggesting a general mechanism for conjugate hydrolysis.
Abstract: Hydrazones and oximes are common conjugates, but are labile to hydrolysis. The hydrolytic stability of isostructural hydrazones and an oxime have been determined at pD 5.0–9.0. The hydrolysis of each adduct was catalyzed by acid. Rate constants for oxime hydrolysis were nearly 103-fold lower than those for simple hydrazones; a trialkylhydrazonium ion (formed after condensation) was even more stable than the oxime. The data suggest a general mechanism for conjugate hydrolysis.

705 citations

Journal ArticleDOI
TL;DR: A review of the structure and molecular interactions of collagen in vivo can be found in this article, where the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the ongoing development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds.
Abstract: With its wide distribution in soft and hard connective tissues, collagen is the most abundant of animal proteins. In vitro, natural collagen can be formed into highly organized, three-dimensional scaffolds that are intrinsically biocompatible, biodegradable, nontoxic upon exogenous application, and endowed with high tensile strength. These attributes make collagen the material of choice for wound healing and tissue engineering applications. In this article, we review the structure and molecular interactions of collagen in vivo; the recent use of natural collagen in sponges, injectables, films and membranes, dressings, and skin grafts; and the on-going development of synthetic collagen mimetic peptides as pylons to anchor cytoactive agents in wound beds.

633 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
20 Apr 2001-Science
TL;DR: It is found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated, which may play a key role in mammalian oxygen sensing.
Abstract: HIF (hypoxia-inducible factor) is a transcription factor that plays a pivotal role in cellular adaptation to changes in oxygen availability. In the presence of oxygen, HIF is targeted for destruction by an E3 ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein (pVHL). We found that human pVHL binds to a short HIF-derived peptide when a conserved proline residue at the core of this peptide is hydroxylated. Because proline hydroxylation requires molecular oxygen and Fe(2+), this protein modification may play a key role in mammalian oxygen sensing.

4,480 citations

Journal ArticleDOI
TL;DR: The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier.
Abstract: The Huisgen 1,3-dipolar cycloaddition reaction of organic azides and alkynes has gained considerable attention in recent years due to the introduction in 2001 of Cu(1) catalysis by Tornoe and Meldal, leading to a major improvement in both rate and regioselectivity of the reaction, as realized independently by the Meldal and the Sharpless laboratories. The great success of the Cu(1) catalyzed reaction is rooted in the fact that it is a virtually quantitative, very robust, insensitive, general, and orthogonal ligation reaction, suitable for even biomolecular ligation and in vivo tagging or as a polymerization reaction for synthesis of long linear polymers. The triazole formed is essentially chemically inert to reactive conditions, e.g. oxidation, reduction, and hydrolysis, and has an intermediate polarity with a dipolar moment of ∼5 D. The basis for the unique properties and rate enhancement for triazole formation under Cu(1) catalysis should be found in the high ∆G of the reaction in combination with the low character of polarity of the dipole of the noncatalyzed thermal reaction, which leads to a considerable activation barrier. In order to understand the reaction in detail, it therefore seems important to spend a moment to consider the structural and mechanistic aspects of the catalysis. The reaction is quite insensitive to reaction conditions as long as Cu(1) is present and may be performed in an aqueous or organic environment both in solution and on solid support.

3,855 citations