scispace - formally typeset
Search or ask a question
Author

Ronald T. Tsunoda

Bio: Ronald T. Tsunoda is an academic researcher. The author has contributed to research in topics: Equator & Convective instability. The author has an hindex of 1, co-authored 1 publications receiving 419 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the seasonal maxima in scintillation activity coincide with the times of year when the solar terminator is most nearly aligned with the geomagnetic flux tubes, and the occurrence of plasma density irregularities responsible for scintillations is most likely when the integrated E-region Pedersen conductivity is changing most rapidly.
Abstract: An enigma of equatorial research has been the observed seasonal and longitudinal occurrence patterns of equatorial scintillations (and range-type spread F). We resolve this problem by showing that the seasonal maxima in scintillation activity coincide with the times of year when the solar terminator is most nearly aligned with the geomagnetic flux tubes. That is, occurrence of plasma density irregularities responsible for scintillations is most likely when the integrated E-region Pedersen conductivity is changing most rapidly. Hence the hitherto puzzling seasonal pattern of scintillation activity, at a given longitude, becomes a simple deterministic function of the magnetic declination and geographic latitude of the magnetic dip equator. This demonstrated relationship is consistent with equatorial irregularity generation by the collisional Rayleigh-Taylor instability and irregularity growth enhancement by the current convective and (wind-driven) gradient drift instabilities. Some discrepancies in this relationship, however, have been found in scintillation data obtained at lower radio frequencies (below, say, 300 MHz) that suggest the presence of other irregularity-influencing processes. The role of field-aligned currents, associated with the longitudinal gradient in integrated E-region Pedersen conductivity produced at the solar terminator, in equatorial irregularity generation via the current convective instability has not been discussed previously.

470 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F.
Abstract: We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts In the early night sector, the bottomside of the F layer is almost always unstable The evolution of the unstable layer is controlled by the history of the vertical drift velocity When the drift velocities are large enough, the necessary seeding mechanisms for the generation of strong spread F always appear to be present The threshold drift velocity for the generation of strong early night irregularities increases linearly with solar flux The geomagnetic control on the generation of spread F is season, solar cycle, and longitude dependent These effects can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance dynamo electric fields The occurrence of early night spread F decreases significantly during equinox solar maximum magnetically disturbed conditions due to disturbance dynamo electric fields which decrease the upward drift velocities near sunset The generation of late night spread F requires the reversal of the vertical velocity from downward to upward for periods longer than about half an hour These irregularities occur most often at ∼0400 local time when the prompt penetration and disturbance dynamo vertical drifts have largest amplitudes The occurrence of late night spread F is highest near solar minimum and decreases with increasing solar activity probably due to the large increase of the nighttime downward drifts with increasing solar flux

656 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the impact of scintillations on GPS receiver design and use and present a review of GPS and ionospheric scintillation for scientists interested in space weather.
Abstract: [1] Ionospheric scintillations are one of the earliest known effects of space weather. Caused by ionization density irregularities, scintillating signals change phase unexpectedly and vary rapidly in amplitude. GPS signals are vulnerable to ionospheric irregularities and scintillate with amplitude variations exceeding 20 dB. GPS is a weak signal system and scintillations can interrupt or degrade GPS receiver operation. For individual signals, interruption is caused by fading of the in-phase and quadrature signals, making the determination of phase by a tracking loop impossible. Degradation occurs when phase scintillations introduce ranging errors or when loss of tracking and failure to acquire signals increases the dilution of precision. GPS scintillations occur most often near the magnetic equator during solar maximum, but they can occur anywhere on Earth during any phase of the solar cycle. In this article we review the subject of GPS and ionospheric scintillations for scientists interested in space weather and engineers interested in the impact of scintillations on GPS receiver design and use.

534 citations

Journal ArticleDOI
TL;DR: In this paper, a test of the generally accepted Rayleigh-Taylor (R-T) instability mechanism for equatorial spread F (ESF) is derived following the formalism of Haerendel (preprint, 1973) which takes into account the variations of physical parameters along geomagnetic flux tubes.
Abstract: In a test of the generally accepted Rayleigh-Taylor (R-T) instability mechanism for equatorial spread F (ESF) a linear instability growth rate γ RT is derived following the formalism of Haerendel (preprint, 1973) which takes into account the variations of physical parameters along geomagnetic flux tubes. The resulting form of γ RT extends the results of previous work by including direct dependencies on transequatorial neutral winds, zonal electric fields, vertical and horizontal ionospheric density gradients, the presence of an E region, and chemical recombination. Realistic atmospheric and ionospheric density model inputs are used for the first time to make quantitative calculations of R-T growth rates for a range of geophysical conditions. The key result of this study is that time/altitude domains having positive calculated instability growth rates are found to coincide with observed time/altitude patterns of ESF occurrence over both a monthly and a yearly time frame. This success in being able to model the climatological occurrence of ESF lends support to the physical model adopted for the instability mechanism and opens up new avenues of research into ESF predictability on a night-to-night and even an hour-to-hour basis.

490 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the key factors that control the ESF generation by generalized Rayleigh-Taylor instability process, such as the prereversal enhancement electric field (vertical drift) that is controlled by post-sunset zonal wind and longitudinal conductivity gradients, meridional/transequatorial winds, flux tube integrated conducitvities, and seed perturbations.

310 citations

Journal ArticleDOI
TL;DR: In this article, an extensive VHF/UHF scintillation data base covering the frequency range of VHF to a few gigahertz has been utilized to determine the magnitudes of phase and intensity scintillations and their temporal/spatial structures during the sunspot maximum and minimum periods.
Abstract: An extensive VHF/UHF scintillation data base covering the frequency range of VHF to a few gigahertz has been utilized to determine the magnitudes of phase and intensity scintillations and their temporal/spatial structures during the sunspot maximum and minimum periods. The equatorial portion of the study has been based on geostationary satellite observations at Huancayo, a station on the magnetic equator, and at Ascension Island, which is an equatorial anomaly station having an extremely disturbed irregularity environment. The high-latitude part of the study is based on quasistationary satellite measurements at a polar cap location (Thule) and two auroral locations (Goose Bay and Tromso). The Tromso observations are augmented with the Defense Nuclear Agency HiLat satellite beacon measurements during the solar minimum period. The data indicate a strong solar cycle control of scintillation activity at all locations, resulting in a drastic reduction of the magnitudes and occurrence of scintillations during the current solar minimum period. This pattern is consistent with both a reduction of F region ionization density and a reduction of irregularity generation in the solar minimum period. At the magnetic equator the magnitude of scintillations at 1.5 GHz seldom exceeds 3 dB with the percentage occurrence > 2 dB varying from 70% during high sunspot conditions to 30% during low sunspot conditions. At the crest of the equatorial anomaly, on the other hand, during the solar maximum in 1979, fades of 20 dB at 1.5 GHz are observed 30% of the time. At a decreased level of solar activity in 1982, a similar occurrence level is obtained at 1.5 GHz for fade levels of only 5 dB. During the solar minimum period, 1.5-GHz scintillations are virtually absent. Phase scintillation measurements made at Ascension Island indicate that the median value of rms phase deviation is about 5 rad for detrend intervals of 100 s. In the auroral region, during the solar maximum period under magnetically disturbed conditions, the median values of scintillation fades and rms phase deviation (82-s detrend) at 250 MHz are observed to be 15 dB and 3 rad, respectively. At Thule, located deep within the polar cap, the median values of scintillation fades and rms phase deviation at 250 MHz attain values as large as 20 dB and 4 rad during the sunspot maximum period. Unlike Ascension Island the scintillation activity at high-latitude stations exhibits a threshold effect and does not decrease until 1983. However, in 1986 with sunspot numbers in the vicinity of 10, fade levels as low as 5 dB at 250 MHz are recorded in the polar cap and auroral stations only 5% of the time. It is noted that at auroral locations the most prominent feature, namely the existence of magnetic L shell-aligned irregularity sheets, is equally evident at both sunspot maximum and minimum.

306 citations