scispace - formally typeset
Search or ask a question
Author

Ronald V. Swanson

Bio: Ronald V. Swanson is an academic researcher from Janssen Pharmaceutica. The author has contributed to research in topics: Histidine kinase & Genome. The author has an hindex of 30, co-authored 58 publications receiving 5116 citations. Previous affiliations of Ronald V. Swanson include University of California, Santa Barbara & California Institute of Technology.


Papers
More filters
Journal ArticleDOI
26 Mar 1998-Nature
TL;DR: The complete genome sequence of A. aeolicus is described, consisting of 1,551,335 base pairs, and it is shown that the use of oxygen (albeit at very low concentrations) as an electron acceptor is allowed by the presence of a complex respiratory apparatus.
Abstract: Aquifex aeolicus was one of the earliest diverging, and is one of the most thermophilic, bacteria known. It can grow on hydrogen, oxygen, carbon dioxide, and mineral salts. The complex metabolic machinery needed for A. aeolicus to function as a chemolithoautotroph (an organism which uses an inorganic carbon source for biosynthesis and an inorganic chemical energy source) is encoded within a genome that is only one-third the size of the E. coli genome. Metabolic flexibility seems to be reduced as a result of the limited genome size. The use of oxygen (albeit at very low concentrations) as an electron acceptor is allowed by the presence of a complex respiratory apparatus. Although this organism grows at 95 degrees C, the extreme thermal limit of the Bacteria, only a few specific indications of thermophily are apparent from the genome. Here we describe the complete genome sequence of 1,551,335 base pairs of this evolutionarily and physiologically interesting organism.

1,100 citations

Journal ArticleDOI
TL;DR: The first crystal structures of a humanHDAC are described: the structures of human HDAC8 complexed with four structurally diverse hydroxamate inhibitors, which sheds light on the catalytic mechanism of the HDACs, and on differences in substrate specificity across theHDAC family.

660 citations

Journal ArticleDOI
TL;DR: The complete genome sequence of an acetate-utilizing methanogen, Methanosarcina acetivorans C2A, is reported, which indicates the likelihood of undiscovered natural energy sources for methanogenesis, whereas the presence of single-subunit carbon monoxide dehydrogenases raises the possibility of nonmethanogenic growth.
Abstract: The Archaea remain the most poorly understood domain of life despite their importance to the biosphere. Methanogenesis, which plays a pivotal role in the global carbon cycle, is unique to the Archaea. Each year, an estimated 900 million metric tons of methane are biologically produced, representing the major global source for this greenhouse gas and contributing significantly to global warming (Schlesinger 1997). Methanogenesis is critical to the waste-treatment industry and biologically produced methane also represents an important alternative fuel source. At least two-thirds of the methane in nature is derived from acetate, although only two genera of methanogens are known to be capable of utilizing this substrate. We report here the first complete genome sequence of an acetate-utilizing (acetoclastic) methanogen, Methanosarcina acetivorans C2A. The Methanosarcineae are metabolically and physiologically the most versatile methanogens. Only Methanosarcina species possess all three known pathways for methanogenesis (Fig. ​(Fig.1)1) and are capable of utilizing no less than nine methanogenic substrates, including acetate. In contrast, all other orders of methanogens possess a single pathway for methanogenesis, and many utilize no more than two substrates. Among methanogens, the Methanosarcineae also display extensive environmental diversity. Individual species of Methanosarcina have been found in freshwater and marine sediments, decaying leaves and garden soils, oil wells, sewage and animal waste digesters and lagoons, thermophilic digesters, feces of herbivorous animals, and the rumens of ungulates (Zinder 1993). Figure 1 Three pathways for methanogenesis. Methanogenesis is a form of anaerobic respiration using a variety of one-carbon (C-1) compounds or acetic acid as a terminal electron acceptor. All three pathways converge on the reduction of methyl-CoM to methane (CH ... The Methanosarcineae are unique among the Archaea in forming complex multicellular structures during different phases of growth and in response to environmental change (Fig. ​(Fig.2).2). Within the Methanosarcineae, a number of distinct morphological forms have been characterized, including single cells with and without a cell envelope, as well as multicellular packets and lamina (Macario and Conway de Macario 2001). Packets and lamina display internal morphological heterogeneity, suggesting the possibility of cellular differentiation. Moreover, it has been suggested that cells within lamina may display differential production of extracellular material, a potential form of cellular specialization (Macario and Conway de Macario 2001). The formation of multicellular structures has been proposed to act as an adaptation to stress and likely plays a role in the ability of Methanosarcina species to colonize diverse environments. Figure 2 Different morphological forms of Methanosarcina acetivorans. Thin-section electron micrographs showing M. acetivorans growing as both single cells (center of micrograph) and within multicellular aggregates (top left, bottom right). Cells were harvested ... Significantly, powerful methods for genetic analysis exist for Methanosarcina species. These tools include plasmid shuttle vectors (Metcalf et al. 1997), very high efficiency transformation (Metcalf et al. 1997), random in vivo transposon mutagenesis (Zhang et al. 2000), directed mutagenesis of specific genes (Zhang et al. 2000), multiple selectable markers (Boccazzi et al. 2000), reporter gene fusions (M. Pritchett and W. Metcalf, unpubl.), integration vectors (Conway de Macario et al. 1996), and anaerobic incubators for large-scale growth of methanogens on solid media (Metcalf et al. 1998). Furthermore, and in contrast to other known methanogens, genetic analysis can be used to study the process of methanogenesis: Because Methanosarcina species are able to utilize each of the three known methanogenic pathways, mutants in a single pathway are viable (M. Pritchett and W. Metcalf, unpubl.). The availability of genetic methods allowing immediate exploitation of genomic sequence, coupled with the genetic, physiological, and environmental diversity of M. acetivorans make this species an outstanding model organism for the study of archaeal biology. For these reasons, we set out to study the genome of M. acetivorans.

626 citations

Journal ArticleDOI
TL;DR: Crystal structures of substrate and bisphosphonate complexes of FPPS provide a structural template for the design of novel inhibitors that may prove useful for the treatment of osteoporosis and other clinical indications including cancer.

256 citations

Journal ArticleDOI
23 Sep 1993-Nature
TL;DR: Direct physical analysis of interactions among proteins in this signal transduction pathway provides evidence for a previously unrecognized binding interaction between the kinase and its substrate, important for enhancing substrate specificity and preventing 'crosstalk' with other systems.
Abstract: We have used surface plasmon resonance biosensor technology to monitor the assembly and dynamics of a signal transduction complex which controls chemotaxis in Escherichia coli A quaternary complex formed which consisted of the response regulator CheY, the histidine protein kinase CheA, a coupling protein CheW and a membrane-bound chemoreceptor Tar. Using various experimental conditions and mutant proteins, we have shown that the complex dissociates under conditions that favour phosphorylation of CheY. Direct physical analysis of interactions among proteins in this signal transduction pathway provides evidence for a previously unrecognized binding interaction between the kinase and its substrate. This interaction may be important for enhancing substrate specificity and preventing 'crosstalk' with other systems. The approach is generally applicable to furthering our understanding of how signalling complexes transduce intracellular messages.

249 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins, which consists of two conserved components, a histidine protein kinase and a response regulator protein.
Abstract: ▪ Abstract Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regul...

3,406 citations

Journal ArticleDOI
22 Sep 2005-Nature
TL;DR: The isolation of a marine crenarchaeote that grows chemolithoautotrophically by aerobically oxidizing ammonia to nitrite—the first observation of nitrification in the Archaea is reported, suggesting that nitrifying marine Cren archaeota may be important to global carbon and nitrogen cycles.
Abstract: For years, microbiologists characterized the Archaea as obligate extremophiles that thrive in environments too harsh for other organisms. The limited physiological diversity among cultivated Archaea suggested that these organisms were metabolically constrained to a few environmental niches. For instance, all Crenarchaeota that are currently cultivated are sulphur-metabolizing thermophiles. However, landmark studies using cultivation-independent methods uncovered vast numbers of Crenarchaeota in cold oxic ocean waters. Subsequent molecular surveys demonstrated the ubiquity of these low-temperature Crenarchaeota in aquatic and terrestrial environments. The numerical dominance of marine Crenarchaeota--estimated at 10(28) cells in the world's oceans--suggests that they have a major role in global biogeochemical cycles. Indeed, isotopic analyses of marine crenarchaeal lipids suggest that these planktonic Archaea fix inorganic carbon. Here we report the isolation of a marine crenarchaeote that grows chemolithoautotrophically by aerobically oxidizing ammonia to nitrite--the first observation of nitrification in the Archaea. The autotrophic metabolism of this isolate, and its close phylogenetic relationship to environmental marine crenarchaeal sequences, suggests that nitrifying marine Crenarchaeota may be important to global carbon and nitrogen cycles.

2,564 citations

Journal ArticleDOI
TL;DR: The MEROPS database has added an analysis tool to the relevant species pages to show significant gains and losses of peptidase genes relative to related species, and has collected over 39 000 known cleavage sites in proteins, peptides and synthetic substrates.
Abstract: Peptidases (proteolytic enzymes) are of great relevance to biology, medicine and biotechnology. This practical importance creates a need for an integrated source of information about them, and also about their natural inhibitors. The MEROPS database (http://merops.sanger.ac.uk) aims to fill this need. The organizational principle of the database is a hierarchical classification in which homologous sets of the proteins of interest are grouped in families and the homologous families are grouped in clans. Each peptidase, family and clan has a unique identifier. The database has recently been expanded to include the protein inhibitors of peptidases, and these are classified in much the same way as the peptidases. Forms of information recently added include new links to other databases, summary alignments for peptidase clans, displays to show the distribution of peptidases and inhibitors among organisms, substrate cleavage sites and indexes for expressed sequence tag libraries containing peptidases. A new way of making hyperlinks to the database has been devised and a BlastP search of our library of peptidase and inhibitor sequences has been added.

2,406 citations

Journal ArticleDOI
TL;DR: A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility.
Abstract: A central question in cell biology is how membrane-spanning receptors transmit extracellular signals inside cells to modulate cell adhesion and motility. Focal adhesion kinase (FAK) is a crucial signalling component that is activated by numerous stimuli and functions as a biosensor or integrator to control cell motility. Through multifaceted and diverse molecular connections, FAK can influence the cytoskeleton, structures of cell adhesion sites and membrane protrusions to regulate cell movement.

2,361 citations

Journal ArticleDOI
TL;DR: Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community.
Abstract: Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that avoided the bias imposed by culturing and led to the discovery of vast new lineages of microbial life. Although the portrait of the microbial world was revolutionized by analysis of 16S rRNA genes, such studies yielded only a phylogenetic description of community membership, providing little insight into the genetics, physiology, and biochemistry of the members. Metagenomics provides a second tier of technical innovation that facilitates study of the physiology and ecology of environmental microorganisms. Novel genes and gene products discovered through metagenomics include the first bacteriorhodopsin of bacterial origin; novel small molecules with antimicrobial activity; and new members of families of known proteins, such as an Na+(Li+)/H+ antiporter, RecA, DNA polymerase, and antibiotic resistance determinants. Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community. The application of metagenomic sequence information will facilitate the design of better culturing strategies to link genomic analysis with pure culture studies.

2,224 citations