scispace - formally typeset
Search or ask a question
Author

Rongrong Bao

Other affiliations: Guangxi University
Bio: Rongrong Bao is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Materials science & Nanowire. The author has an hindex of 15, co-authored 23 publications receiving 1494 citations. Previous affiliations of Rongrong Bao include Guangxi University.

Papers
More filters
Journal ArticleDOI
TL;DR: A skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity is presented.
Abstract: Mechanosensation electronics (or Electronic skin, e-skin) consists of mechanically flexible and stretchable sensor networks that can detect and quantify various stimuli to mimic the human somatosensory system, with the sensations of touch, heat/cold, and pain in skin through various sensory receptors and neural pathways. Here we present a skin-inspired highly stretchable and conformable matrix network (SCMN) that successfully expands the e-skin sensing functionality including but not limited to temperature, in-plane strain, humidity, light, magnetic field, pressure, and proximity. The actualized specific expandable sensor units integrated on a structured polyimide network, potentially in three-dimensional (3D) integration scheme, can also fulfill simultaneous multi-stimulus sensing and achieve an adjustable sensing range and large-area expandability. We further construct a personalized intelligent prosthesis and demonstrate its use in real-time spatial pressure mapping and temperature estimation. Looking forward, this SCMN has broader applications in humanoid robotics, new prosthetics, human-machine interfaces, and health-monitoring technologies.

945 citations

Journal ArticleDOI
TL;DR: In this article, a PEDOT:PSS and patterned ZnO NWs with a spatial resolution of 7 µm for mapping of spatial pressure distributions is designed and fabricated.
Abstract: A functional tactile sensing device is essential for next-generation robotics and human‐machine interfaces technologies, since the emulation of touching requires large-scale pressure sensor arrays with distinguishable spatial-resolution, high sensitivity, and fast response. Here, a fl exible LED array composed of PEDOT:PSS and patterned ZnO NWs with a spatial resolution of 7 µm for mapping of spatial pressure distributions is designed and fabricated. The emission intensity of the LED array sensor matrix is dominated by locally applied strains as indicated by the piezo-phototronic effect. Therefore, spatial pressure distributions are immediately obtained by parallel-reading the illumination intensities of the LED arrays based on an electroluminescence working mechanism. A wide range of pressure measurements from 40 to 100 MPa are achieved through controlling the growth conditions of the ZnO nanowire array. These devices may fi nd prospective applications as electronic skins by taking advantage of their high spatial-resolution, fl exibility, and wide pressure mapping range.

196 citations

Journal ArticleDOI
Jing Li1, Rongrong Bao1, Juan Tao1, Yiyao Peng1, Caofeng Pan1 
TL;DR: Flexible pressure sensors that can maintain their pressure sensing ability with arbitrary deformation are of important significance in the fields of electronic skin, human-machine interfaces and medical diagnosis and treatment as discussed by the authors.
Abstract: Flexible pressure sensors that can maintain their pressure sensing ability with arbitrary deformation are of important significance in the fields of electronic skin, human–machine interfaces and medical diagnosis and treatment. To date, flexible pressure sensors have been studied extensively, and diverse transduction principles as well as different structural designs can be introduced to produce flexible pressure sensors that are capable of conformably covering an arbitrary surface. Moreover, high-performance flexible pressure sensors have been designed for different application needs. For example, high-resolution flexible pressure sensor arrays have been achieved based on piezoelectric nanowires (NWs); meanwhile crack-based pressure sensors with an extraordinarily simple structure have high sensitivity to tiny pressure, such as sound and physiological signals. For broader applications, endowing flexible pressure sensors with the sensing abilities of temperature, humidity and other stimuli are being developed to mimic the somatosensory system of human skin. In recent years, the development of novel flexible pressure sensors has been burgeoning with new sensors developed with self-powered, self-healing and biodegradable abilities. Here, we present comprehensive descriptions of the recent flexible pressure sensors, and then propose the potential prospects of flexible pressure sensors integrated with high sensitivity, high resolution, fast response, good stretchability and a wide detection range together, further enriching the multifunctions of flexible pressure sensors.

177 citations

Journal ArticleDOI
TL;DR: An overview of the development of high-performance tactile sensors applied in intelligent systems with excellent application prospects in many fields, such as wearable devices, medical treatment, artificial limbs and robotics is presented.
Abstract: With the rapid development of intelligent technology, tactile sensors as sensing devices constitute the core foundation of intelligent systems. Biological organs that can sense various stimuli play vital roles in the interaction between human beings and the external environment. Inspired by this fact, research on skin-like tactile sensors with multifunctionality and high performance has attracted extensive attention. An overview of the development of high-performance tactile sensors applied in intelligent systems is systematically presented. First, the development of tactile sensors endowed with stretchability, self-healing, biodegradability, high resolution and self-powered capability is discussed. Then, for intelligent systems, tactile sensors with excellent application prospects in many fields, such as wearable devices, medical treatment, artificial limbs and robotics, are presented. Finally, the future prospects of tactile sensors for intelligent systems are discussed.

115 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the development in self-powered tactile sensor array system based on the triboelectric effect is systematically presented, where the combination of multi-functionalization and high performance of tactile sensors aimed at achieving highly comprehensive performance is presented.
Abstract: With the arrival of intelligent terminals, tactile sensors which are capable of sensing various external physical stimuli are considered among the most vital devices for the next generation of smart electronics. To create a self-powered tactile sensor system that can function sustainably and continuously without an external power source is of crucial significance. An overview of the development in self-powered tactile sensor array system based on the triboelectric effect is systematically presented. The combination of multi-functionalization and high performance of tactile sensors aimed at achieving highly comprehensive performance is presented. For the tactile sensor unit, a development is summarized based on the two primary modes which are vertical contact–separation and single-electrode. For the pressure mapping array, the resolution is significantly enhanced by the novel cross-type configuration based on the single-electrode mode. Integrated with other mechanisms, the performance will be further elevated by broadening of the detect range and realizing of visualization of pressure imaging. Then, two main applications of human–machine interaction (HMI) and trajectory monitoring are comprehensively summarized. Finally, the future perspectives of selfpowered tactile sensor system based on triboelectric effect are discussed.

109 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent progress in electronic skin or e‐skin research is broadly reviewed, focusing on technologies needed in three main applications: skin‐attachable electronics, robotics, and prosthetics.
Abstract: Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.

881 citations

Journal ArticleDOI
TL;DR: This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care.
Abstract: Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of “bio-integrated” technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in f...

727 citations

Journal ArticleDOI
TL;DR: To imitate tactile sensing via e‐skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs that can map pressure with high resolution and rapid response beyond that of human perception.
Abstract: The skin is the largest organ of the human body and can sense pressure, temperature, and other complex environmental stimuli or conditions. The mimicry of human skin's sensory ability via electronics is a topic of innovative research that could find broad applications in robotics, artificial intelligence, and human-machine interfaces, all of which promote the development of electronic skin (e-skin). To imitate tactile sensing via e-skins, flexible and stretchable pressure sensor arrays are constructed based on different transduction mechanisms and structural designs. These arrays can map pressure with high resolution and rapid response beyond that of human perception. Multi-modal force sensing, temperature, and humidity detection, as well as self-healing abilities are also exploited for multi-functional e-skins. Other recent progress in this field includes the integration with high-density flexible circuits for signal processing, the combination with wireless technology for convenient sensing and energy/data transfer, and the development of self-powered e-skins. Future opportunities lie in the fabrication of highly intelligent e-skins that can sense and respond to variations in the external environment. The rapidly increasing innovations in this area will be important to the scientific community and to the future of human life.

679 citations