scispace - formally typeset
Search or ask a question
Author

Rory O. R. Y. Thompson

Bio: Rory O. R. Y. Thompson is an academic researcher from Woods Hole Oceanographic Institution. The author has contributed to research in topics: Rossby wave & Gulf Stream. The author has an hindex of 9, co-authored 15 publications receiving 1022 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a simple model is given that describes the response of the upper ocean to an imposed wind stress, which is taken to mix thoroughly a layer of depth h, and to erode the stably stratified fluid below.
Abstract: A simple model is given that describes the response of the upper ocean to an imposed wind stress. The stress drives both mean and turbulent flow near the surface, which is taken to mix thoroughly a layer of depth h, and to erode the stably stratified fluid below. A marginal stability criterion based on a Froude number is used to close the problem, and it is suggested that the mean momentum has a strong role in the mixing process. The initial deepening is predicted to obey where u. is the friction velocity of the imposed stress, N the ambient buoyancy frequency, and t the time. After one-half inertial period the deepening is arrested by rotadeon at a depth h = 22/4 u.{(Nf)+ where f is the Coriolis frequency. The flow is then a “mixed Ekman” layer, with strong inertial oscillations superimposed on it. Three quarters of the mean energy of the deepening layer is found to be kinetic, and only one-quarter potential. Heating and cooling are included in the model, but stress dominates for time-scales of ...

632 citations

Journal ArticleDOI
TL;DR: In this article, three slab models of the surface mixed layer of the ocean are given simple and fast computer implementations, and actual meteorological data from Ocean Weather Station N are used for a year-long forecast.
Abstract: Three slab models of the surface mixed layer of the ocean are given simple and fast computer implementations. Actual meteorological data from Ocean Weather Station N are used for a year-long forecast. The results compare quite well with the observations of vertical temperature profiles, with correlations up to 0.98 between predicted and observed sea-surface temperature and of 0.8 between predicted and observed mixed-layer depths. Temperature anomalies introduced in the spring can be covered up in the summer, yet reappear in the winter. A constant-thickness slab is suitable as a lower boundary for some atmospheric climatological studies, if a depth of 25 m is used. The model based on a Foude number criterion worked best for the available data set; this is physically appealing since the model contains no adjustable parameters.

100 citations

Journal ArticleDOI
TL;DR: In this paper, current-meter observations near 39°N, 70°W on the continental rise, provide evidence that the motions with periods of 1 to 2 weeks are dominated by baroclinic topographic Rossby waves which decay upward from the bottom Temperature and up-slope velocity are coherent and in quadrature at these frequencies, as predicted.

81 citations

Journal ArticleDOI
TL;DR: A theory of Rossby waves makes a number of predictions about motions below the thermocline at Site D (39°10'N, 70°W), and an experiment was made to test these predictions.

67 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a new spectral estimation technique to find evidence for strong topographic Rossby waves at depths of 500 m and more for periods of about 2 days to 2 weeks, which is to be expected for a 2D inertial subrange.

61 citations


Cited by
More filters
DOI
01 Jan 2008
TL;DR: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication.
Abstract: The Technical Note series provides an outlet for a variety of NCAR manuscripts that contribute in specialized ways to the body of scientific knowledge but which are not suitable for journal, monograph, or book publication. Reports in this series are issued by the NCAR Scientific Divisions ; copies may be obtained on request from the Publications Office of NCAR. Designation symbols for the series include: Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.

9,022 citations

Journal ArticleDOI
TL;DR: In this article, a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics, including a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized.
Abstract: If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h, where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h. This nonlocal “K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind-driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double-diffusion density ratio, Rρ. Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long-Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives.

3,756 citations

Journal ArticleDOI
TL;DR: In this paper, a subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-resolving ocean circulation models.
Abstract: A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces is proposed for use in non-eddy-resolving ocean circulation models. The mixing is applied in isopycnal coordinates to isopycnal layer thickness, or inverse density gradient, as well as to passive scalars, temperature and salinity. The transformation of these mixing forms to physical coordinates is also presented.

3,107 citations

Journal ArticleDOI
TL;DR: A new version of the Hadley Centre coupled model (HadCM3) that does not require flux adjustments to prevent large climate drifts in the simulation is presented in this article.
Abstract: Results are presented from a new version of the Hadley Centre coupled model (HadCM3) that does not require flux adjustments to prevent large climate drifts in the simulation The model has both an improved atmosphere and ocean component In particular, the ocean has a 125° × 125° degree horizontal resolution and leads to a considerably improved simulation of ocean heat transports compared to earlier versions with a coarser resolution ocean component The model does not have any spin up procedure prior to coupling and the simulation has been run for over 400 years starting from observed initial conditions The sea surface temperature (SST) and sea ice simulation are shown to be stable and realistic The trend in global mean SST is less than 0009 °C per century In part, the improved simulation is a consequence of a greater compatibility of the atmosphere and ocean model heat budgets The atmospheric model surface heat and momentum budget are evaluated by comparing with climatological ship-based estimates Similarly the ocean model simulation of poleward heat transports is compared with direct ship-based observations for a number of sections across the globe Despite the limitations of the observed datasets, it is shown that the coupled model is able to reproduce many aspects of the observed heat budget

2,674 citations

Journal ArticleDOI
TL;DR: In this paper, a 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed and a new global seasonal estimation of barrier layer thickness is also provided.
Abstract: [1] A new 2° resolution global climatology of the mixed layer depth (MLD) based on individual profiles is constructed. Previous global climatologies have been based on temperature or density-gridded climatologies. The criterion selected is a threshold value of temperature or density from a near-surface value at 10 m depth (ΔT = 0.2°C or Δσθ = 0.03 kg m−3). A validation of the temperature criterion on moored time series data shows that the method is successful at following the base of the mixed layer. In particular, the first spring restratification is better captured than with a more commonly used larger criteria. In addition, we show that for a given 0.2°C criterion, the MLD estimated from averaged profiles results in a shallow bias of 25% compared to the MLD estimated from individual profiles. A new global seasonal estimation of barrier layer thickness is also provided. An interesting result is the prevalence in mid- and high-latitude winter hemispheres of vertically density-compensated layers, creating an isopycnal but not mixed layer. Consequently, we propose an optimal estimate of MLD based on both temperature and density data. An independent validation of the maximum annual MLD with oxygen data shows that this oxygen estimate may be biased in regions of Ekman pumping or strong biological activity. Significant differences are shown compared to previous climatologies. The timing of the seasonal cycle of the mixed layer is shifted earlier in the year, and the maximum MLD captures finer structures and is shallower. These results are discussed in light of the different approaches and the choice of criterion.

2,345 citations