scispace - formally typeset
Search or ask a question
Author

Rosa M. Arán-Ais

Bio: Rosa M. Arán-Ais is an academic researcher from Fritz Haber Institute of the Max Planck Society. The author has contributed to research in topics: Catalysis & Electrochemistry. The author has an hindex of 20, co-authored 39 publications receiving 1932 citations. Previous affiliations of Rosa M. Arán-Ais include Ruhr University Bochum & University of Alicante.

Papers
More filters
Journal ArticleDOI
04 Mar 2019
TL;DR: In this article, the authors discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design, focusing on findings extracted from in situ and operando characterizations.
Abstract: The CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy densities, is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from a high overpotential, a low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu–bimetallic catalysts, as well as some alternative materials, are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries and compositions in synergy with a well-chosen electrolyte are also provided. The electrochemical reduction of carbon dioxide to fuels and feedstocks has received increased attention over the past few years. In this Review, Roldan Cuenya and co-workers discuss strategies to achieve high selectivity towards multicarbon products via rational catalyst and electrolyte design.

719 citations

Journal ArticleDOI
TL;DR: Aran-Ais et al. as mentioned in this paper used in situ methods to explore the influence of surface morphology and oxidation state on the performance of copper catalysts and found that the continuous regeneration of defects and Cu(i) species synergistically favored C-C coupling pathways.
Abstract: The efficient electrochemical conversion of CO2 provides a route to fuels and feedstocks. Copper catalysts are well-known to be selective to multicarbon products, although the role played by the surface architecture and the presence of oxides is not fully understood. Here we report improved efficiency towards ethanol by tuning the morphology and oxidation state of the copper catalysts through pulsed CO2 electrolysis. We establish a correlation between the enhanced production of C2+ products (76% ethylene, ethanol and n-propanol at −1.0 V versus the reversible hydrogen electrode) and the presence of (100) terraces, Cu2O and defects on Cu(100). We monitored the evolution of the catalyst morphology by analysis of cyclic voltammetry curves and ex situ atomic force microscopy data, whereas the chemical state of the surface was examined via quasi in situ X-ray photoelectron spectroscopy. We show that the continuous regeneration of defects and Cu(i) species synergistically favours C–C coupling pathways. Carbon dioxide can be reduced electrocatalytically to fuels using copper catalysts, but the key features that determine the selectivity of these materials to specific products remains uncertain. Here Aran–Ais et al. use in situ methods to explore the influence of morphology and oxidation state on the performance of copper catalysts.

288 citations

Posted Content
01 Feb 2020-viXra
TL;DR: In this article, the authors discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte, focusing on findings extracted from in situ and operando characterizations.
Abstract: CO2 electroreduction reaction (CO2RR) to fuels and feedstocks is an attractive route to close the anthropogenic carbon cycle and store renewable energy. The generation of more reduced chemicals, especially multicarbon oxygenate and hydrocarbon products (C2+) with higher energy density is highly desirable for industrial applications. However, selective conversion of CO2 to C2+ suffers from high overpotential, low reaction rate and low selectivity, and the process is extremely sensitive to the catalyst structure and electrolyte. Here we discuss strategies to achieve high C2+ selectivity through rational design of the catalyst and electrolyte. Current state-of-the-art catalysts, including Cu and Cu-bimetallic catalysts as well as alternative materials are considered. The importance of taking into consideration the dynamic evolution of the catalyst structure and composition are highlighted, focusing on findings extracted from in situ and operando characterizations. Additional theoretical insight into the reaction mechanisms underlying the improved C2+ selectivity of specific catalyst geometries/compositions in synergy with a well-chosen electrolyte are also provided.

259 citations

Journal ArticleDOI
TL;DR: In this article, a voltammetric profile of preferentially shaped platinum nanoparticles has been used to analyze the different sites present on the surface of nanoparticles in NaOH solutions and revisited in sulfuric and perchloric acid media.
Abstract: The voltammetric profile of preferentially shaped platinum nanoparticles has been used to analyze the different sites present on the surface. For the first time, this analysis has been made in NaOH solutions and revisited in sulfuric and perchloric acid media. The comparison with the voltammetric profiles of the model surfaces, that is, single-crystal electrodes, allows assigning the different signals appearing in the voltammograms of the nanoparticle to specific sites on the surface. A good correlation between the shape of the nanoparticle determined by TEM and the voltammetric profile is obtained. For the nanoparticles characterized in alkaline media, the adsorbed species on the surface have been characterized, and three major regions can be identified. Below 0.2 V, the major contribution is due to hydrogen adsorption, whereas above 0.6 V, adsorbed OH is the main species on the surface. Between those values, the signals are due to the competitive adsorption/desorption process of OH/H. New criteria for d...

229 citations

Journal ArticleDOI
TL;DR: Electrocatalysts that are highly active and selective for multicarbon products are urgently needed to improve the energy efficiency of CO2RR and the importance of in situ and operando characterization methods to understand the structure- and electrolyte-sensitivity of the CO2 RR is discussed.
Abstract: The utilization of fossil fuels (i.e., coal, petroleum, and natural gas) as the main energy source gives rise to serious environmental issues, including global warming caused by the continuously increasing level of atmospheric CO2. To deal with this challenge, fossil fuels are being partially replaced by renewable energy such as solar and wind. However, such energy sources are usually intermittent and currently constitute a very low portion of the overall energy consumption. Recently, the electrochemical conversion of CO2 to chemicals and fuels with high energy density driven by electricity derived from renewable energy has been recognized as a promising strategy toward sustainable energy.The activation and reduction of CO2, which is a thermodynamically stable and kinetically inert molecule, is extremely challenging. Although the participation of protons in the CO2 electroreduction reaction (CO2RR) helps lower the energy barrier, high overpotentials are still needed to efficiently drive the process. On th...

200 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A broad and historical view of different aspects and their complex interplay in CO2R catalysis on Cu is taken, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices.
Abstract: To date, copper is the only heterogeneous catalyst that has shown a propensity to produce valuable hydrocarbons and alcohols, such as ethylene and ethanol, from electrochemical CO2 reduction (CO2R). There are variety of factors that impact CO2R activity and selectivity, including the catalyst surface structure, morphology, composition, the choice of electrolyte ions and pH, and the electrochemical cell design. Many of these factors are often intertwined, which can complicate catalyst discovery and design efforts. Here we take a broad and historical view of these different aspects and their complex interplay in CO2R catalysis on Cu, with the purpose of providing new insights, critical evaluations, and guidance to the field with regard to research directions and best practices. First, we describe the various experimental probes and complementary theoretical methods that have been used to discern the mechanisms by which products are formed, and next we present our current understanding of the complex reaction networks for CO2R on Cu. We then analyze two key methods that have been used in attempts to alter the activity and selectivity of Cu: nanostructuring and the formation of bimetallic electrodes. Finally, we offer some perspectives on the future outlook for electrochemical CO2R.

2,055 citations

Journal ArticleDOI
TL;DR: A new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell with high activity and stability are described, providing a new direction for catalyst performance optimization for next-generation fuel cells.
Abstract: To enhance and optimize nanocatalyst performance and durability for the oxygen reduction reaction in fuel-cell applications, we look beyond Pt-metal disordered alloys and describe a new class of Pt-Co nanocatalysts composed of ordered Pt(3)Co intermetallic cores with a 2-3 atomic-layer-thick platinum shell. These nanocatalysts exhibited over 200% increase in mass activity and over 300% increase in specific activity when compared with the disordered Pt(3)Co alloy nanoparticles as well as Pt/C. So far, this mass activity for the oxygen reduction reaction is the highest among the Pt-Co systems reported in the literature under similar testing conditions. Stability tests showed a minimal loss of activity after 5,000 potential cycles and the ordered core-shell structure was maintained virtually intact, as established by atomic-scale elemental mapping. The high activity and stability are attributed to the Pt-rich shell and the stable intermetallic Pt(3)Co core arrangement. These ordered nanoparticles provide a new direction for catalyst performance optimization for next-generation fuel cells.

1,689 citations

Journal Article
TL;DR: In this article, the authors used in situ transmission electron microscopy to show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles.
Abstract: It is conventionally assumed that the growth of monodisperse colloidal nanocrystals requires a temporally discrete nucleation followed by monomer attachment onto the existing nuclei. However, recent studies have reported violations of this classical growth model, and have suggested that inter-particle interactions are also involved during the growth. Mechanisms of nanocrystal growth still remain controversial. Using in situ transmission electron microscopy, we show that platinum nanocrystals can grow either by monomer attachment from solution onto the existing particles or by coalescence between the particles. Surprisingly, an initially broad size distribution of the nanocrystals can spontaneously narrow. We suggest that nanocrystals take different pathways of growth based on their size- and morphology-dependent internal energies. These observations are expected to be highly relevant for other nanocrystal systems.

949 citations

Journal ArticleDOI
TL;DR: A critical appraisal of alkaline HER electrocatalysis is presented, with a special emphasis on the connection between fundamental surface electrochemistry on single-crystal models and the derived molecular design principle for real-world electrocatalysts.
Abstract: The hydrogen evolution reaction (HER) is a fundamental process in electrocatalysis and plays an important role in energy conversion for the development of hydrogen-based energy sources. However, the considerably slow rate of the HER in alkaline conditions has hindered advances in water splitting techniques for high-purity hydrogen production. Differing from well documented acidic HER, the mechanistic aspects of alkaline HER are yet to be settled. A critical appraisal of alkaline HER electrocatalysis is presented, with a special emphasis on the connection between fundamental surface electrochemistry on single-crystal models and the derived molecular design principle for real-world electrocatalysts. By presenting some typical examples across theoretical calculations, surface characterization, and electrochemical experiments, we try to address some key ongoing debates to deliver a better understanding of alkaline HER at the atomic level.

879 citations