scispace - formally typeset
Search or ask a question
Author

Rosa M. Sainz

Bio: Rosa M. Sainz is an academic researcher from University of Oviedo. The author has contributed to research in topics: Melatonin & Prostate cancer. The author has an hindex of 50, co-authored 105 publications receiving 12305 citations. Previous affiliations of Rosa M. Sainz include University of Texas Health Science Center at San Antonio & University of Texas at San Antonio.


Papers
More filters
Journal ArticleDOI
TL;DR: This report reviews the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress and analyses the possible mechanisms by which melatonin regulates these enzymes.
Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.

1,824 citations

Journal ArticleDOI
TL;DR: It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet‐to‐be identified basic action(s) of this ancient molecule.
Abstract: Melatonin is uncommonly effective in reducing oxidative stress under a remarkably large number of circumstances. It achieves this action via a variety of means: direct detoxification of reactive oxygen and reactive nitrogen species and indirectly by stimulating antioxidant enzymes while suppressing the activity of pro-oxidant enzymes. In addition to these well-described actions, melatonin also reportedly chelates transition metals, which are involved in the Fenton/Haber-Weiss reactions; in doing so, melatonin reduces the formation of the devastatingly toxic hydroxyl radical resulting in the reduction of oxidative stress. Melatonin's ubiquitous but unequal intracellular distribution, including its high concentrations in mitochondria, likely aid in its capacity to resist oxidative stress and cellular apoptosis. There is credible evidence to suggest that melatonin should be classified as a mitochondria-targeted antioxidant. Melatonin's capacity to prevent oxidative damage and the associated physiological debilitation is well documented in numerous experimental ischemia/reperfusion (hypoxia/reoxygenation) studies especially in the brain (stroke) and in the heart (heart attack). Melatonin, via its antiradical mechanisms, also reduces the toxicity of noxious prescription drugs and of methamphetamine, a drug of abuse. Experimental findings also indicate that melatonin renders treatment-resistant cancers sensitive to various therapeutic agents and may be useful, due to its multiple antioxidant actions, in especially delaying and perhaps treating a variety of age-related diseases and dehumanizing conditions. Melatonin has been effectively used to combat oxidative stress, inflammation and cellular apoptosis and to restore tissue function in a number of human trials; its efficacy supports its more extensive use in a wider variety of human studies. The uncommonly high-safety profile of melatonin also bolsters this conclusion. It is the current feeling of the authors that, in view of the widely diverse beneficial functions that have been reported for melatonin, these may be merely epiphenomena of the more fundamental, yet-to-be identified basic action(s) of this ancient molecule.

1,045 citations

Journal ArticleDOI
TL;DR: Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (micromol/kg).
Abstract: Melatonin was found to be a potent free radical scavenger in 1993. Since then over 800 publications have directly or indirectly confirmed this observation. Melatonin scavenges a variety of reactive oxygen and nitrogen species including hydroxyl radical, hydrogen peroxide, singlet oxygen, nitric oxide and peroxynitrite anion. Based on the analyses of structure-activity relationships, the indole moiety of the melatonin molecule is the reactive center of interaction with oxidants due to its high resonance stability and very low activation energy barrier towards the free radical reactions. However, the methoxy and amide side chains also contribute significantly to melatonins antioxidant capacity. The N-C=O structure in the C3 amide side chain is the functional group. The carbonyl group in the structure of N-C=O is key for melatonin to scavenge the second reactive species and the nitrogen in the N-C=O structure is necessary for melatonin to form the new five membered ring after melatonins interaction with a reactive species. The methoxy group in C5 appears to keep melatonin from exhibiting prooxidative activity. If the methoxy group is replaced by a hydroxyl group, under some in vitro conditions, the antioxidant capacity of this molecule may be enhanced. However, the cost of this change are decreased lipophility and increased prooxidative potential. Therefore, in in vivo studies the antioxidant efficacy of melatonin appears to be superior to its hydroxylated counterpart. The mechanisms of melatonins interaction with reactive species probably involves donation of an electron to form the melatoninyl cation radical or through an radical addition at the site C3. Other possibilities include hydrogen donation from the nitrogen atom or substitution at position C2, C4 and C7 and nitrosation. Melatonin also has the ability to repair damaged biomolecules as shown by the fact that it converts the guanosine radical to guanosine by electron transfer. Unlike the classical antioxidants, melatonin is devoid of prooxid ative activity and all known intermediates generated by the interaction of melatonin with reactive species are also free radical scavengers. This phenomenon is defined as the free radical scavenging cascade reaction of the melatonin family. Due to this cascade, one melatonin molecule has the potential to scavenge up to 4 or more reactive species. This makes melatonin very effective as an antioxidant. Under in vivo conditions, melatonin is often several times more potent than vitamin C and E in protecting tissues from oxidative injury when compared at an equivalent dosage (mmol / kg). Future research in the field of melatonin as a free radical scavenger might be focused on: 1), signal transduction and antioxidant enzyme gene expression induced by melatonin and its metabolites, 2), melatonin levels in tissues and in cells, 3), melatonin structure modifications, 4), melatonin and its metabolites in plants and, 5), clinical trials using melatonin to treat free radical related diseases such as Alzheimers, Parkin sons, stroke and heart disease.

982 citations

Journal ArticleDOI
TL;DR: Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiencyof other antioxidants.
Abstract: This brief resume enumerates the multiple actions of melatonin as an antioxidant. This indoleamine is produced in the vertebrate pineal gland, the retina and possibly some other organs. Additionally, however, it is found in invertebrates, bacteria, unicellular organisms as well as in plants, all of which do not have a pineal gland. Melatonin's functions as an antioxidant include: a), direct free radical scavenging, b), stimulation of antioxidative enzymes, c), increasing the efficiency of mitochondrial oxidative phosphorylation and reducing electron leakage (thereby lowering free radical generation), and 3), augmenting the efficiency of other antioxidants. There may be other functions of melatonin, yet undiscovered, which enhance its ability to protect against molecular damage by oxygen and nitrogen-based toxic reactants. Numerous in vitro and in vivo studies have documented the ability of both physiological and pharmacological concentrations to melatonin to protect against free radical destruction. Furthermore, clinical tests utilizing melatonin have proven highly successful; because of the positive outcomes of these studies, melatonin's use in disease states and processes where free radical damage is involved should be increased.

522 citations

Journal ArticleDOI
TL;DR: It seems likely that melatonin initially evolved as an antioxidant, becoming a vitamin in the food chain, and in multicellular organisms, where it is produced, it has acquired autocoid, paracoid and hormonal properties.
Abstract: Melatonin, a derivative of an essential amino acid, tryptophan, was first identified in bovine pineal tissue and subsequently it has been portrayed exclusively as a hormone. Recently accumulated evidence has challenged this concept. Melatonin is present in the earliest life forms and is found in all organisms including bacteria, algae, fungi, plants, insects, and vertebrates including humans. Several characteristics of melatonin distinguish it from a classic hormone such as its direct, non-receptor-mediated free radical scavenging activity. As melatonin is also ingested in foodstuffs such as vegetables, fruits, rice, wheat and herbal medicines, from the nutritional point of view, melatonin can also be classified as a vitamin. It seems likely that melatonin initially evolved as an antioxidant, becoming a vitamin in the food chain, and in multicellular organisms, where it is produced, it has acquired autocoid, paracoid and hormonal properties.

505 citations


Cited by
More filters
01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: This review includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.
Abstract: Reactive oxygen species (ROS) and other radicals are involved in a variety of biological phenomena, such as mutation, carcinogenesis, degenerative and other diseases, inflammation, aging, and development. ROS are well recognized for playing a dual role as deleterious and beneficial species. The objectives of this review are to describe oxidative stress phenomena, terminology, definitions, and basic chemical characteristics of the species involved; examine the biological targets susceptible to oxidation and the defense mechanisms of the organism against these reactive metabolites; and analyze methodologies, including immunohistochemical markers, used in toxicological pathology in the visualization of oxidative stress phenomena. Direct detection of ROS and other free radicals is difficult, because these molecules are short-lived and highly reactive in a nonspecific manner. Ongoing oxidative damage is, thus, generally analyzed by measurement of secondary products including derivatives of amino acids, nuclei acids, and lipid peroxidation. Attention has been focused on electrochemical methods based on voltammetry measurements for evaluating the total reducing power of biological fluids and tissues. This approach can function as a tool to assess the antioxidant-reducing profile of a biological site and follow changes in pathological situations. This review thus includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.

2,102 citations

Journal ArticleDOI
TL;DR: It is shown that temporal feeding restriction under light-dark or dark-dark conditions can change the phase of circadian gene expression in peripheral cell types by up to 12 h while leaving thephase of cyclic gene expressionIn the SCN unaffected.
Abstract: In mammals, circadian oscillators exist not only in the suprachiasmatic nucleus, which harbors the central pacemaker, but also in most peripheral tissues. It is believed that the SCN clock entrains the phase of peripheral clocks via chemical cues, such as rhythmically secreted hormones. Here we show that temporal feeding restriction under light–dark or dark–dark conditions can change the phase of circadian gene expression in peripheral cell types by up to 12 h while leaving the phase of cyclic gene expression in the SCN unaffected. Hence, changes in metabolism can lead to an uncoupling of peripheral oscillators from the central pacemaker. Sudden large changes in feeding time, similar to abrupt changes in the photoperiod, reset the phase of rhythmic gene expression gradually and are thus likely to act through a clock-dependent mechanism. Food-induced phase resetting proceeds faster in liver than in kidney, heart, or pancreas, but after 1 wk of daytime feeding, the phases of circadian gene expression are similar in all examined peripheral tissues.

2,083 citations

Journal ArticleDOI
TL;DR: This report reviews the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress and analyses the possible mechanisms by which melatonin regulates these enzymes.
Abstract: Antioxidant enzymes form the first line of defense against free radicals in organisms. Their regulation depends mainly on the oxidant status of the cell, given that oxidants are their principal modulators. However, other factors have been reported to increase antioxidant enzyme activity and/or gene expression. During the last decade, the antioxidant melatonin has been shown to possess genomic actions, regulating the expression of several genes. Melatonin also influences both antioxidant enzyme activity and cellular mRNA levels for these enzymes. In the present report, we review the studies which document the influence of melatonin on the activity and expression of the antioxidative enzymes glutathione peroxidase, superoxide dismutases and catalase both under physiological and under conditions of elevated oxidative stress. We also analyze the possible mechanisms by which melatonin regulates these enzymes.

1,824 citations

Journal ArticleDOI
TL;DR: This review focuses on melatonin metabolism which includes the synthetic rate‐limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites.
Abstract: Melatonin is a highly conserved molecule. Its presence can be traced back to ancient photosynthetic prokaryotes. A primitive and primary function of melatonin is that it acts as a receptor-independent free radical scavenger and a broad-spectrum antioxidant. The receptor-dependent functions of melatonin were subsequently acquired during evolution. In the current review, we focus on melatonin metabolism which includes the synthetic rate-limiting enzymes, synthetic sites, potential regulatory mechanisms, bioavailability in humans, mechanisms of breakdown and functions of its metabolites. Recent evidence indicates that the original melatonin metabolite may be N 1 -acetyl-N 2 -formyl-5-methoxykynuramine (AFMK) rather than its commonly measured urinary excretory product 6-hydroxymelatonin sulfate. Numerous pathways for AFMK formation have been identified both in vitro and in vivo. These include enzymatic and pseudo-enzymatic pathways, interactions with reactive oxygen species (ROS)/reactive nitrogen species (RNS) and with ultraviolet irradiation. AFMK is present in mammals including humans, and is the only detectable melatonin metabolite in unicellular organisms and metazoans. 6-Hydroxymelatonin sulfate has not been observed in these low evolutionary-ranked organisms. This implies that AFMK evolved earlier in evolution than 6-hydroxymelatonin sulfate as a melatonin metabolite. Via the AFMK pathway, a single melatonin molecule is reported to scavenge up to 10 ROS/RNS. That the free radical scavenging capacity of melatonin extends to its secondary, tertiary and quaternary metabolites is now documented. It appears that melatonin's interaction with ROS/RNS is a prolonged process that involves many of its derivatives. The process by which melatonin and its metabolites successively scavenge ROS/RNS is referred as the free radical scavenging cascade. This cascade reaction is a novel property of melatonin and explains how it differs from other conventional antioxidants. This cascade reaction makes melatonin highly effective, even at low concentrations, in protecting organisms from oxidative stress. In accordance with its protective function, substantial amounts of melatonin are found in tissues and organs which are frequently exposed to the hostile environmental insults such as the gut and skin or organs which have high oxygen consumption such as the brain. In addition, melatonin production may be upregulated by low intensity stressors such as dietary restriction in rats and exercise in humans. Intensive oxidative stress results in a rapid drop of circulating melatonin levels. This melatonin decline is not related to its reduced synthesis but to its rapid consumption, i.e. circulating melatonin is rapidly metabolized by interaction with ROS/RNS induced by stress. Rapid melatonin consumption during elevated stress may serve as a protective mechanism of organisms in which melatonin is used as a first-line defensive molecule against oxidative damage. The oxidative status of organisms modifies melatonin metabolism. It has been reported that the higher the oxidative state, the more AFMK is produced. The ratio of AFMK and another melatonin metabolite, cyclic 3-hydroxymelatonin, may serve as an indicator of the level of oxidative stress in organisms.

1,454 citations