scispace - formally typeset
Search or ask a question
Author

Rosaria Meccariello

Bio: Rosaria Meccariello is an academic researcher from Parthenope University of Naples. The author has contributed to research in topics: Cannabinoid receptor & Endocannabinoid system. The author has an hindex of 29, co-authored 86 publications receiving 2313 citations. Previous affiliations of Rosaria Meccariello include Seconda Università degli Studi di Napoli & University of Naples Federico II.


Papers
More filters
Journal ArticleDOI
TL;DR: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction.
Abstract: Background Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its analogues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA's disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal differentiation, synaptic plasticity, neuroinflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releasing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting results have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This review offers new insights on these issues with the aim to find the "fil rouge", if any, that characterize BPA's mechanism of action with outcomes on neuronal function and reproduction.

117 citations

Journal ArticleDOI
TL;DR: The environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring.
Abstract: Background Bisphenol A (BPA) is an endocrine disrupting chemical widely used in the manufacture of polycarbonate plastic and epoxy resin to produce a multitude of consumer products, food and drink containers, and medical devices. BPA is similar to estradiol in structure and thus interferes in steroid signalling with different outcomes on reproductive health depending on doses, life stage, mode, and timing of exposure. In this respect, it has an emerging and controversial role as a "reproductive toxicant" capable of inducing short and long-term effects including the modulation of gene expression through epigenetic modification (i.e. methylation of CpG islands, histone modifications and production of non-coding RNA) with direct and trans-generational effects on exposed organisms and their offspring, respectively. Objective This review provides an overview about BPA effects on reproductive health and aims to summarize the epigenetic effects of BPA in male and female reproduction. Results BPA exerts epigenetic effects in both male and female reproduction. In males, BPA affects spermatogenesis and sperm quality and possible trans-generational effects on the reproductive ability of the offspring. In females, BPA affects ovary, embryo development, and gamete quality for successful in vivo and in vitro fertilization (IVF). Conclusion The exact mechanisms of BPA-mediated effects in reproduction are not fully understood; however, the environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring.

105 citations

Journal ArticleDOI
TL;DR: Direct evidence on the presence of the “endocannabinoid system,” constituted by type-1 cannabinoid receptor (CNR1) and fatty acid amide hydrolase (FAAH), in the frog Rana esculenta testis demonstrating its expression in tubular compartment is provided.
Abstract: N-arachidonoylethanolamide (anandamide [AEA]) is the main endocannabinoid described to date in the testis. It exerts its effects through the activation of G-protein coupled cannabinoid receptors (CNR). However, the activity of AEA in controlling male reproduction is still poorly known. Here we provide direct evidence on the presence of the ‘‘endocannabinoid system,’’ constituted by type-1 cannabinoid receptor (CNR1) and fatty acid amide hydrolase (FAAH), in the frog Rana esculenta testis demonstrating its expression in tubular compartment. In fact, during the annual reproductive cycle, both proteins increase in September, when the appearance of spermatids (SPT) occurs. Immunocytochemistry confirms their localization in germ cells and, in particular, in elongated SPT. Signals are still present in spermatozoa (SPZ), as demonstrated by Western blot analysis. Furthermore, the activation of CNR1 reduces sperm motility. Comparative research, carried out using mouse and rat SPZ, definitely indicates that the endocannabinoid system operates in SPZ of phylogenetically distant species. A conserved physiological role of endocannabinoid system in controlling the inhibition of sperm motility is suggested. male reproductive tract, sperm, sperm motility and transport, spermatogenesis, testis

101 citations

Book ChapterDOI
TL;DR: It is suggested that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream, and that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms.
Abstract: This review emphasizes the comparative approach for developing insight into knowledge related to cellular communications occurring in the hypothalamus–pituitary–gonadal axis. Indeed, research on adaptive phenomena leads to evolutionary tracks. Thus, going through recent results, we suggest that pheromonal communication precedes local communication which, in turn, precedes communication via the blood stream. Furthermore, the use of different routes of communication by a certain mediator leads to a conceptual change related to what hormones are. Nevertheless, endocrine communication should leave out of consideration the source (glandular or not) of mediator. Finally, we point out that the use of lower vertebrate animal models is fundamental to understanding general physiological mechanisms. In fact, different anatomical organization permits access to tissues not readily approachable in mammals.

90 citations

Journal ArticleDOI
01 Jun 2009-Placenta
TL;DR: Examination of the expression of nape-pld mRNA, CB1 and FAAH in human placenta hypothesizing that their altered signaling may contribute to spontaneous miscarriage found that very low or absent FAAH and high CB1 levels correspond with spontaneous miscarriage.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding molecular signaling networks that coordinate strategies for successful implantation and decidualization may lead to approaches to improve the outcome of natural pregnancy and pregnancy conceived from in vitro fertilization.
Abstract: Physiological and molecular processes initiated during implantation for pregnancy success are complex but highly organized. This review primarily highlights adverse ripple effects arising from defects during the peri-implantation period that perpetuate throughout pregnancy. These defects are reflected in aberrations in embryo spacing, decidualization, placentation and intrauterine embryonic growth, manifesting in preeclampsia, miscarriages and/or preterm birth. Understanding molecular signaling networks that coordinate strategies for successful implantation and decidualization may lead to approaches to improve the outcome of natural pregnancy and pregnancy conceived from in vitro fertilization.

949 citations

Journal ArticleDOI
TL;DR: Mice created with a neuron-specific disruption of the IR gene showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia.
Abstract: Insulin receptors (IRs) and insulin signaling proteins are widely distributed throughout the central nervous system (CNS). To study the physiological role of insulin signaling in the brain, we created mice with a neuron-specific disruption of the IR gene (NIRKO mice). Inactivation of the IR had no impact on brain development or neuronal survival. However, female NIRKO mice showed increased food intake, and both male and female mice developed diet-sensitive obesity with increases in body fat and plasma leptin levels, mild insulin resistance, elevated plasma insulin levels, and hypertriglyceridemia. NIRKO mice also exhibited impaired spermatogenesis and ovarian follicle maturation because of hypothalamic dysregulation of luteinizing hormone. Thus, IR signaling in the CNS plays an important role in regulation of energy disposal, fuel metabolism, and reproduction.

576 citations

Journal ArticleDOI
TL;DR: The state of the art of critical eCB functions in peripheral organs is reviewed to establish consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.

500 citations

Journal ArticleDOI
TL;DR: The CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases, suggesting that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions.
Abstract: The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.

337 citations

Journal ArticleDOI
TL;DR: This review assesses potential causes involving adverse effects on testis development in perinatal life (primarily effects on Sertoli cell number) or effects on the process of spermatogenesis in adulthood, which are probably mainly reversible.
Abstract: The high incidence of low sperm counts in young (European) men and evidence for declining sperm counts in recent decades mean that the environmental/lifestyle impact on spermatogenesis is an important health issue. This review assesses potential causes involving adverse effects on testis development in perinatal life (primarily effects on Sertoli cell number), which are probably irreversible, or effects on the process of spermatogenesis in adulthood, which are probably mainly reversible. Several lifestyle-related (obesity, smoking) and environmental (exposure to traffic exhaust fumes, dioxins, combustion products) factors appear to negatively affect both the perinatal and adult testes, emphasizing the importance of environmental/lifestyle impacts throughout the life course. Apart from this, public concern about adverse effects of environmental chemicals (ECs) (pesticides, food additives, persistent pollutants such as DDT, polychlorinated biphenyls) on spermatogenesis in adult men are, in general, not supported by the available data for humans. Where adverse effects of ECs have been shown, they are usually in an occupational setting rather than applying to the general population. In contrast, a modern Western lifestyle (sedentary work/lifestyle, obesity) is potentially damaging to sperm production. Spermatogenesis in normal men is poorly organized and inefficient so that men are poorly placed to cope with environmental/lifestyle insults.

308 citations