scispace - formally typeset
Search or ask a question
Author

Rosemarie Schobess

Bio: Rosemarie Schobess is an academic researcher from Martin Luther University of Halle-Wittenberg. The author has contributed to research in topics: Factor V & Venous thrombosis. The author has an hindex of 20, co-authored 31 publications receiving 2558 citations. Previous affiliations of Rosemarie Schobess include Goethe University Frankfurt & Boston Children's Hospital.

Papers
More filters
Journal ArticleDOI
TL;DR: Raised lipoprotein (a), protein C deficiency, and stroke of vascular origin are risk factors for recurrent arterial ischaemic stroke in childhood.

322 citations

Journal ArticleDOI
01 Oct 2000-Stroke
TL;DR: Besides acquired triggering factors, the data presented here suggest that genetic prothrombotic risk factors play a role in symptomatic neonatal stroke.
Abstract: Background and Purpose—The present multicenter case-control study was prospectively designed to assess the extent to which single and combined clotting factor abnormalities influence the onset of symptomatic ischemic stroke in full-term neonates. Methods—Lipoprotein (Lp)(a); the factor V (FV) G1691A mutation; the prothrombin (PT) G20210A variant; the methylenetetrahydrofolate reductase (MTHFR) T677T genotype; antithrombin; protein C; protein S; and anticardiolipin antibodies (ACAs) were investigated in 91 consecutively recruited neonatal stroke patients and 182 age- and sex-matched healthy controls. Results—Sixty-two of 91 stroke patients (68.1%) had at least 1 prothrombotic risk factor compared with 44 control subjects (24.2%) (odds ratio [OR]/95% confidence interval [CI], 6.70/3.84 to 11.67). An increased Lp(a) level (>30 mg/dL) was found in 20 patients and 10 controls (OR/95% CI, 4.84/2.16 to 10.86); FV G1691A was present in 17 patients and 10 controls (OR/95% CI, 3.95/1.72 to 9.0); the PT G20210A vari...

289 citations

Journal ArticleDOI
TL;DR: CVT in children is a multifactorial disease that, in the majority of cases, results from a combination of prothrombotic risk factors and/or underlying clinical condition.
Abstract: Background— The present study was performed to assess the association of prothrombotic risk factors and underlying conditions (infections, vascular trauma, immobilization, malignancies, autoimmune ...

275 citations

Journal ArticleDOI
15 Feb 2001-Blood
TL;DR: It is suggested that screening for genetic risk factors be done among pediatric patients with VTE, and only the presence of prothrombotic defects increases the risk of recurrent VTE.

237 citations

Journal ArticleDOI
TL;DR: Age at CVT onset, non-administration of anticoagulation, persistent venous occlusion, and presence of G20210A mutation in factor II predict recurrent VT in children.
Abstract: Summary Background The relative importance of previous diagnosis and hereditary prothrombotic risk factors for cerebral venous thrombosis (CVT) in children in determining risk of a second cerebral or systemic venous thrombosis (VT), compared with other clinical, neuroimaging, and treatment variables, is unknown. Methods We followed up the survivors of 396 consecutively enrolled patients with CVT, aged newborn to 18 years (median 5·2 years) for a median of 36 months (maximum 85 months). In accordance with international treatment guidelines, 250 children (65%) received acute anticoagulation with unfractionated heparin or low-molecular weight heparin, followed by secondary anticoagulation prophylaxis with low-molecular weight heparin or warfarin in 165 (43%). Results Of 396 children enrolled, 12 died immediately and 22 (6%) had recurrent VT (13 cerebral; 3%) at a median of 6 months (range 0·1–85). Repeat venous imaging was available in 266 children. Recurrent VT only occurred in children whose first CVT was diagnosed after age 2 years; the underlying medical condition had no effect. In Cox regression analyses, non-administration of anticoagulant before relapse (hazard ratio [HR] 11·2 95% CI 3·4–37·0; p Conclusion Age at CVT onset, non-administration of anticoagulation, persistent venous occlusion, and presence of G20210A mutation in factor II predict recurrent VT in children. Secondary prophylactic anticoagulation should be given on a patient-to-patient basis in children with newly identified CVT and at high risk of recurrent VT. Factors that affect recanalisation need further research.

194 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Statistical Update brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update each year.
Abstract: Appendix I: List of Statistical Fact Sheets. URL: http://www.americanheart.org/presenter.jhtml?identifier=2007 We wish to thank Drs Brian Eigel and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. Disclosures View this table: View this table: View this table: # Summary {#article-title-2} Each year, the American Heart Association, in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on disease …

6,176 citations

Journal ArticleDOI
TL;DR: Author(s): Go, Alan S; Mozaffarian, Dariush; Roger, Veronique L; Benjamin, Emelia J; Berry, Jarett D; Borden, William B; Bravata, Dawn M; Dai, Shifan; Ford, Earl S; Fox, Caroline S; Franco, Sheila; Fullerton, Heather J; Gillespie, Cathleen; Hailpern, Susan M; Heit, John A; Howard, Virginia J; Huff
Abstract: Author(s): Go, Alan S; Mozaffarian, Dariush; Roger, Veronique L; Benjamin, Emelia J; Berry, Jarett D; Borden, William B; Bravata, Dawn M; Dai, Shifan; Ford, Earl S; Fox, Caroline S; Franco, Sheila; Fullerton, Heather J; Gillespie, Cathleen; Hailpern, Susan M; Heit, John A; Howard, Virginia J; Huffman, Mark D; Kissela, Brett M; Kittner, Steven J; Lackland, Daniel T; Lichtman, Judith H; Lisabeth, Lynda D; Magid, David; Marcus, Gregory M; Marelli, Ariane; Matchar, David B; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Mussolino, Michael E; Nichol, Graham; Paynter, Nina P; Schreiner, Pamela J; Sorlie, Paul D; Stein, Joel; Turan, Tanya N; Virani, Salim S; Wong, Nathan D; Woo, Daniel; Turner, Melanie B; American Heart Association Statistics Committee and Stroke Statistics Subcommittee

5,449 citations

Journal ArticleDOI
TL;DR: This chapter describes the most important sources and the types of data the AHA uses from them and other government agencies to derive the annual statistics in this Update.
Abstract: 1. About These Statistics…e70 2. Cardiovascular Diseases…e72 3. Coronary Heart Disease, Acute Coronary Syndrome, and Angina Pectoris…e89 4. Stroke…e99 5. High Blood Pressure…e111 6. Congenital Cardiovascular Defects…e116 7. Heart Failure…e119 8. Other Cardiovascular Diseases…e122 9. Risk Factor: Smoking/Tobacco Use…e128 10. Risk Factor: High Blood Cholesterol and Other Lipids…e132 11. Risk Factor: Physical Inactivity…e136 12. Risk Factor: Overweight and Obesity…e139 13. Risk Factor: Diabetes Mellitus…e143 14. End-Stage Renal Disease and Chronic Kidney Disease…e149 15. Metabolic Syndrome…e151 16. Nutrition…e153 17. Quality of Care…e155 18. Medical Procedures…e159 19. Economic Cost of Cardiovascular Diseases…e162 20. At-a-Glance Summary Tables…e164 21. Glossary and Abbreviation Guide…e168 Writing Group Disclosures…e171 Appendix I: List of Statistical Fact Sheets: http://www.americanheart.org/presenter.jhtml?identifier=2007 We thank Drs Robert Adams, Philip Gorelick, Matt Wilson, and Philip Wolf (members of the Statistics Committee or Stroke Statistics Subcommittee); Brian Eigel; Gregg Fonarow; Kathy Jenkins; Gail Pearson; and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. # 1. About These Statistics {#article-title-2} The American Heart Association (AHA) works with the Centers for Disease Control and Prevention’s National Center for Health Statistics (CDC/NCHS); the National Heart, Lung, and Blood Institute (NHLBI); the National Institute of Neurological Disorders and Stroke (NINDS); and other government agencies to derive the annual statistics in this Update. This chapter describes the most important sources and the types of data we use from them. For more details and an alphabetical list of abbreviations, see Chapter 21 of this document, the Glossary and Abbreviation Guide. The surveys used are:

5,393 citations

Journal ArticleDOI
TL;DR: Dariush Mozaffarian, Michael E. Mussolino, Graham Nichol, Nina P. Paynter, Wayne D. Sorlie, Randall S. Stafford, Tanya N. Turan, Melanie B. Turner, Nathan D. Turner.
Abstract: Rosamond, Paul D. Sorlie, Randall S. Stafford, Tanya N. Turan, Melanie B. Turner, Nathan D. Dariush Mozaffarian, Michael E. Mussolino, Graham Nichol, Nina P. Paynter, Wayne D. Ariane Marelli, David B. Matchar, Mary M. McDermott, James B. Meigs, Claudia S. Moy, Lackland, Judith H. Lichtman, Lynda D. Lisabeth, Diane M. Makuc, Gregory M. Marcus, John A. Heit, P. Michael Ho, Virginia J. Howard, Brett M. Kissela, Steven J. Kittner, Daniel T. Caroline S. Fox, Heather J. Fullerton, Cathleen Gillespie, Kurt J. Greenlund, Susan M. Hailpern, Todd M. Brown, Mercedes R. Carnethon, Shifan Dai, Giovanni de Simone, Earl S. Ford, Véronique L. Roger, Alan S. Go, Donald M. Lloyd-Jones, Robert J. Adams, Jarett D. Berry, Association 2011 Update : A Report From the American Heart −− Heart Disease and Stroke Statistics

5,311 citations

Journal ArticleDOI
TL;DR: The American Heart Association's 2020 Impact Goals for Cardiovascular Diseases and Disorders are revealed, with a focus on preventing, treating, and preventing heart disease and stroke.
Abstract: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .e3 1. About These Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .e7 2. American Heart Association's 2020 Impact Goals. . . . . . . . . . . . . . . . .e10 3. Cardiovascular Diseases . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .e21 4. Subclinical Atherosclerosis . . . . . . . . . . . . . . . . . . . . .e45 5. Coronary Heart Disease, Acute Coronary Syndrome, and Angina Pectoris . . . . . . . . .e54 6. Stroke (Cerebrovascular Disease) . . . . . . . . . . . . . . . . . . . . . . . . . . . .e68 7. High Blood Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .e88 8. Congenital Cardiovascular Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . .e97 9. Cardiomyopathy and Heart Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . .e102 10. Disorders …

5,260 citations