scispace - formally typeset
Search or ask a question
Author

Ross D. Murch

Bio: Ross D. Murch is an academic researcher from Hong Kong University of Science and Technology. The author has contributed to research in topics: Antenna (radio) & MIMO. The author has an hindex of 55, co-authored 364 publications receiving 14448 citations. Previous affiliations of Ross D. Murch include Australian National University & University of Dundee.


Papers
More filters
Journal ArticleDOI
TL;DR: The results show that the proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-divisionmultiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes.
Abstract: Multiuser orthogonal frequency division multiplexing (OFDM) with adaptive multiuser subcarrier allocation and adaptive modulation is considered. Assuming knowledge of the instantaneous channel gains for all users, we propose a multiuser OFDM subcarrier, bit, and power allocation algorithm to minimize the total transmit power. This is done by assigning each user a set of subcarriers and by determining the number of bits and the transmit power level for each subcarrier. We obtain the performance of our proposed algorithm in a multiuser frequency selective fading environment for various time delay spread values and various numbers of users. The results show that our proposed algorithm outperforms multiuser OFDM systems with static time-division multiple access (TDMA) or frequency-division multiple access (FDMA) techniques which employ fixed and predetermined time-slot or subcarrier allocation schemes. We have also quantified the improvement in terms of the overall required transmit power, the bit-error rate (BER), or the area of coverage for a given outage probability.

2,925 citations

Journal ArticleDOI
TL;DR: A transmit preprocessing technique for the downlink of multiuser multiple-input multiple-output (MIMO) systems is introduced and results demonstrate the potential of the technique in terms of performance and capacity.
Abstract: We introduce a transmit preprocessing technique for the downlink of multiuser multiple-input multiple-output (MIMO) systems. It decomposes the multiuser MIMO downlink channel into multiple parallel independent single-user MIMO downlink channels. Some key properties are that each equivalent single-user MIMO channel has the same properties as a conventional single-user MIMO channel, and that increasing the number of transmit antennas of the multiuser system by one increases the number of spatial channels to each user by one. Simulation results are also provided and these results demonstrate the potential of our technique in terms of performance and capacity.

883 citations

Journal ArticleDOI
TL;DR: In this article, a simple ground plane structure that can reduce mutual coupling between closely packed antenna elements is proposed and studied, which consists of a slitted pattern, without via's, etched onto a single ground plane and it is therefore low cost and straightforward to fabricate.
Abstract: A simple ground plane structure that can reduce mutual coupling between closely-packed antenna elements is proposed and studied. The structure consists of a slitted pattern, without via's, etched onto a single ground plane and it is therefore low cost and straightforward to fabricate. It is found that isolations of more than -20 dB can be achieved between two parallel individual planar inverted-F antennas (PIFAs) sharing a common ground plane, with inter-antenna spacing (center to center) of 0.116 lambdao and ground plane size 0.331lambdao 2. At 2.31 GHz it is demonstrated that this translates into an edge to edge separation between antennas of just 10 mm. Similarly the structure can be applied to reduce mutual coupling between three or four radiating elements. In addition the mutual coupling between half wavelength patches and monopoles can also be reduced with the aid of the proposed ground plane structure. Results of parametric studies are also given in this paper. Both simulation and measurement results are used to confirm the suppression of mutual coupling between closely-packed antenna elements with our slitted ground plane.

586 citations

Journal ArticleDOI
TL;DR: In this paper, a USB dongle MIMO antenna for the 2.4 GHz WLAN band is presented, which consists of two antenna elements and a coupling element which artificially creates an additional coupling path between the antenna elements.
Abstract: This paper introduces a coupling element to enhance the isolation between two closely packed antennas operating at the same frequency band. The proposed structure consists of two antenna elements and a coupling element which is located in between the two antenna elements. The idea is to use field cancellation to enhance isolation by putting a coupling element which artificially creates an additional coupling path between the antenna elements. To validate the idea, a design for a USB dongle MIMO antenna for the 2.4 GHz WLAN band is presented. In this design, the antenna elements are etched on a compact low-cost FR4 PCB board with dimensions of 20times40times1.6 mm3. According to our measurement results, we can achieve more than 30 dB isolation between the antenna elements even though the two parallel individual planar inverted F antenna (PIFA) in the design share a solid ground plane with inter-antenna spacing (Center to Center) of less than 0.095 lambdao or edge to edge separations of just 3.6 mm (0.0294 lambdao). Both simulation and measurement results are used to confirm the antenna isolation and performance. The method can also be applied to different types of antennas such as non-planar antennas. Parametric studies and current distribution for the design are also included to show how to tune the structure and control the isolation.

413 citations

Journal ArticleDOI
TL;DR: In this article, a capacitively loaded planar inverted-F antenna (PIFA) was proposed and studied, and it was found that the capacitive load reduced the resonance length of the PIFA from /spl lambda/4 to less than /spl ε/S.
Abstract: A capacitively loaded planar inverted-F antenna (PIFA) is proposed and studied. It is found that the capacitive load reduces the resonance length of the PIFA from /spl lambda//4 to less than /spl lambda//S. A design with a bandwidth of 178 MHz centered at 1.8 GHz is provided to demonstrate that compact antennas for mobile telephone handsets can be constructed using this approach. The finite-difference time-domain (FDTD) method is used in the study and experimental verification is also provided.

376 citations


Cited by
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time.
Abstract: Multiple-input multiple-output (MIMO) technology is maturing and is being incorporated into emerging wireless broadband standards like long-term evolution (LTE) [1]. For example, the LTE standard allows for up to eight antenna ports at the base station. Basically, the more antennas the transmitter/receiver is equipped with, and the more degrees of freedom that the propagation channel can provide, the better the performance in terms of data rate or link reliability. More precisely, on a quasi static channel where a code word spans across only one time and frequency coherence interval, the reliability of a point-to-point MIMO link scales according to Prob(link outage) ` SNR-ntnr where nt and nr are the numbers of transmit and receive antennas, respectively, and signal-to-noise ratio is denoted by SNR. On a channel that varies rapidly as a function of time and frequency, and where circumstances permit coding across many channel coherence intervals, the achievable rate scales as min(nt, nr) log(1 + SNR). The gains in multiuser systems are even more impressive, because such systems offer the possibility to transmit simultaneously to several users and the flexibility to select what users to schedule for reception at any given point in time [2].

5,158 citations

Journal ArticleDOI
TL;DR: This paper presents a detailed study on recent advances and open research issues in WMNs, followed by discussing the critical factors influencing protocol design and exploring the state-of-the-art protocols for WMNs.

4,205 citations

Journal ArticleDOI
TL;DR: While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.
Abstract: The use of space-division multiple access (SDMA) in the downlink of a multiuser multiple-input, multiple-output (MIMO) wireless communications network can provide a substantial gain in system throughput. The challenge in such multiuser systems is designing transmit vectors while considering the co-channel interference of other users. Typical optimization problems of interest include the capacity problem - maximizing the sum information rate subject to a power constraint-or the power control problem-minimizing transmitted power such that a certain quality-of-service metric for each user is met. Neither of these problems possess closed-form solutions for the general multiuser MIMO channel, but the imposition of certain constraints can lead to closed-form solutions. This paper presents two such constrained solutions. The first, referred to as "block-diagonalization," is a generalization of channel inversion when there are multiple antennas at each receiver. It is easily adapted to optimize for either maximum transmission rate or minimum power and approaches the optimal solution at high SNR. The second, known as "successive optimization," is an alternative method for solving the power minimization problem one user at a time, and it yields superior results in some (e.g., low SNR) situations. Both of these algorithms are limited to cases where the transmitter has more antennas than all receive antennas combined. In order to accommodate more general scenarios, we also propose a framework for coordinated transmitter-receiver processing that generalizes the two algorithms to cases involving more receive than transmit antennas. While the proposed algorithms are suboptimal, they lead to simpler transmitter and receiver structures and allow for a reasonable tradeoff between performance and complexity.

3,291 citations

Proceedings Article
01 Jan 1991
TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.
Abstract: It is shown that, particularly for terrestrial cellular telephony, the interference-suppression feature of CDMA (code division multiple access) can result in a many-fold increase in capacity over analog and even over competing digital techniques. A single-cell system, such as a hubbed satellite network, is addressed, and the basic expression for capacity is developed. The corresponding expressions for a multiple-cell system are derived. and the distribution on the number of users supportable per cell is determined. It is concluded that properly augmented and power-controlled multiple-cell CDMA promises a quantum increase in current cellular capacity. >

2,951 citations