scispace - formally typeset
Search or ask a question
Author

Ross Girshick

Other affiliations: University of Washington, Carnegie Mellon University, Microsoft  ...read more
Bio: Ross Girshick is an academic researcher from Facebook. The author has contributed to research in topics: Object detection & Convolutional neural network. The author has an hindex of 97, co-authored 166 publications receiving 231744 citations. Previous affiliations of Ross Girshick include University of Washington & Carnegie Mellon University.


Papers
More filters
01 Jan 2010
TL;DR: This note describes some recent advances that improve the performance of the object detection system described in [2], including the UoC-TTI LSVMMDPM entry in the PASCAL VOC 2009 comp3 challenge.
Abstract: This note describes some recent advances that improve the performance of the object detection system described in [2]. Some of the improvements included here comprised the UoC-TTI LSVMMDPM entry in the PASCAL VOC 2009 comp3 challenge [1] and others were developed subsequently. Complete source code for the latest version of the object detection system can be found at http://people.cs.uchicago.edu/~pff/latent/.

4 citations

01 Jan 2011
TL;DR: In this article, a grid search with a step size of 0.05m in the range [0.05, 0.60]m was used to estimate the mean average precision.
Abstract: mean average precision using grid search with a step size of 0.05m in the range [0.05, 0.60]m. Table 1 shows that depending on which error metric is used (i.e., does missing an occluded joint count as a false negative or not?), the optimized length thresholds are quite different. In the right column we see that when the model is penalized for missing occluded joints, it makes use of longer range votes to maximize mAP. In some cases, such as head, feet, and ankles, the difference is rather large. Intuitively this makes sense: occluded joints tend to be further away from visible depth pixels than non-occluded joints. This experiment used a forest trained on 30k images.

4 citations

Journal ArticleDOI
TL;DR: In this article , the authors revisited the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks and introduced an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model.
Abstract: This paper revisits the standard pretrain-then-finetune paradigm used in computer vision for visual recognition tasks. Typically, state-of-the-art foundation models are pretrained using large scale (weakly) supervised datasets with billions of images. We introduce an additional pre-pretraining stage that is simple and uses the self-supervised MAE technique to initialize the model. While MAE has only been shown to scale with the size of models, we find that it scales with the size of the training dataset as well. Thus, our MAE-based pre-pretraining scales with both model and data size making it applicable for training foundation models. Pre-pretraining consistently improves both the model convergence and the downstream transfer performance across a range of model scales (millions to billions of parameters), and dataset sizes (millions to billions of images). We measure the effectiveness of pre-pretraining on 10 different visual recognition tasks spanning image classification, video recognition, object detection, low-shot classification and zero-shot recognition. Our largest model achieves new state-of-the-art results on iNaturalist-18 (91.3%), 1-shot ImageNet-1k (62.1%), and zero-shot transfer on Food-101 (96.0%). Our study reveals that model initialization plays a significant role, even for web-scale pretraining with billions of images.

4 citations

Posted Content
22 Dec 2015
TL;DR: This paper proposes an algorithm to decouple the human reporting bias from the correct visually grounded labels for learning image classifiers, and provides results that are highly interpretable for reporting “what’s in the image” versus “ what”s worth saying.
Abstract: When human annotators are given a choice about what to label in an image, they apply their own subjective judgments on what to ignore and what to mention. We refer to these noisy "human-centric" annotations as exhibiting human reporting bias. Examples of such annotations include image tags and keywords found on photo sharing sites, or in datasets containing image captions. In this paper, we use these noisy annotations for learning visually correct image classifiers. Such annotations do not use consistent vocabulary, and miss a significant amount of the information present in an image; however, we demonstrate that the noise in these annotations exhibits structure and can be modeled. We propose an algorithm to decouple the human reporting bias from the correct visually grounded labels. Our results are highly interpretable for reporting "what's in the image" versus "what's worth saying." We demonstrate the algorithm's efficacy along a variety of metrics and datasets, including MS COCO and Yahoo Flickr 100M. We show significant improvements over traditional algorithms for both image classification and image captioning, doubling the performance of existing methods in some cases.

3 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Book ChapterDOI
05 Oct 2015
TL;DR: Neber et al. as discussed by the authors proposed a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently, which can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.
Abstract: There is large consent that successful training of deep networks requires many thousand annotated training samples. In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently. The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks. Using the same network trained on transmitted light microscopy images (phase contrast and DIC) we won the ISBI cell tracking challenge 2015 in these categories by a large margin. Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. The full implementation (based on Caffe) and the trained networks are available at http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net .

49,590 citations

Posted Content
TL;DR: This work presents a residual learning framework to ease the training of networks that are substantially deeper than those used previously, and provides comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

44,703 citations