scispace - formally typeset
Search or ask a question
Author

Ross W. B. Lindsay

Bio: Ross W. B. Lindsay is an academic researcher from International AIDS Vaccine Initiative. The author has contributed to research in topics: T cell & Cytotoxic T cell. The author has an hindex of 15, co-authored 29 publications receiving 2244 citations. Previous affiliations of Ross W. B. Lindsay include National Institutes of Health & Edward Jenner Institute for Vaccine Research.
Topics: T cell, Cytotoxic T cell, CD8, Immunogen, Antigen

Papers
More filters
Journal ArticleDOI
TL;DR: The quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.
Abstract: CD4+ T cells have a crucial role in mediating protection against a variety of pathogens through production of specific cytokines. However, substantial heterogeneity in CD4+ T-cell cytokine responses has limited the ability to define an immune correlate of protection after vaccination. Here, using multiparameter flow cytometry to assess the immune responses after immunization, we show that the degree of protection against Leishmania major infection in mice is predicted by the frequency of CD4+ T cells simultaneously producing interferon-gamma, interleukin-2 and tumor necrosis factor. Notably, multifunctional effector cells generated by all vaccines tested are unique in their capacity to produce high amounts of interferon-gamma. These data show that the quality of a CD4+ T-cell cytokine response can be a crucial determinant in whether a vaccine is protective, and may provide a new and useful prospective immune correlate of protection for vaccines based on T-helper type 1 (TH1) cells.

1,308 citations

Journal ArticleDOI
TL;DR: A model in which broad-based T cell-mediated responses upon vaccination can be maximized by codelivery of aggregated protein and TLR7/8 agonist, which together promote optimal antigen acquisition and presentation by multiple DC subsets in the context of critical proinflammatory cytokines is proposed.
Abstract: The success of a non-live vaccine requires improved formulation and adjuvant selection to generate robust T cell immunity following immunization. Here, using protein linked to a TLR7/8 agonist (conjugate vaccine), we investigated the functional properties of vaccine formulation, the cytokines, and the DC subsets required to induce protective multifunctional T cell immunity in vivo. The conjugate vaccine required aggregation of the protein to elicit potent Th1 CD4+ and CD8+ T cell responses. Remarkably, the conjugate vaccine, through aggregation of the protein and activation of TLR7 in vivo, led to an influx of migratory DCs to the LN and increased antigen uptake by several resident and migratory DC subsets, with the latter effect strongly influenced by vaccine-induced type I IFN. Ex vivo migratory CD8-DEC205+CD103-CD326- langerin-negative dermal DCs were as potent in cross-presenting antigen to naive CD8+ T cells as CD11c+CD8+ DCs. Moreover, these cells also influenced Th1 CD4+ T cell priming. In summary, we propose a model in which broad-based T cell-mediated responses upon vaccination can be maximized by codelivery of aggregated protein and TLR7/8 agonist, which together promote optimal antigen acquisition and presentation by multiple DC subsets in the context of critical proinflammatory cytokines.

164 citations

Journal ArticleDOI
TL;DR: Qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gagp24 protein are revealed and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity.
Abstract: Protein vaccines, if rendered immunogenic, would facilitate vaccine development against HIV and other pathogens. We compared in nonhuman primates (NHPs) immune responses to HIV Gag p24 within 3G9 antibody to DEC205 (“DEC-HIV Gag p24”), an uptake receptor on dendritic cells, to nontargeted protein, with or without poly ICLC, a synthetic double stranded RNA, as adjuvant. Priming s.c. with 60 μg of both HIV Gag p24 vaccines elicited potent CD4+ T cells secreting IL-2, IFN-γ, and TNF-α, which also proliferated. The responses increased with each of three immunizations and recognized multiple Gag peptides. DEC-HIV Gag p24 showed better cross-priming for CD8+ T cells, whereas the avidity of anti-Gag antibodies was ∼10-fold higher with nontargeted Gag 24 protein. For both protein vaccines, poly ICLC was essential for T- and B-cell immunity. To determine whether adaptive responses could be further enhanced, animals were boosted with New York vaccinia virus (NYVAC)-HIV Gag/Pol/Nef. Gag-specific CD4+ and CD8+ T-cell responses increased markedly after priming with both protein vaccines and poly ICLC. These data reveal qualitative differences in antibody and T-cell responses to DEC-HIV Gag p24 and Gag p24 protein and show that prime boost with protein and adjuvant followed by NYVAC elicits potent cellular immunity.

141 citations

Journal ArticleDOI
TL;DR: The key predictions of convergent recombination are tested in a comprehensive evaluation of the naïve CD8+ TCRβ repertoire in mice and provide a framework for understanding the early mobilization of public CD8-cell clonotypes, which can exert profound biological effects during acute infectious processes.
Abstract: Adaptive T-cell immunity relies on the recruitment of antigen-specific clonotypes, each defined by the expression of a distinct T-cell receptor (TCR), from an array of naive T-cell precursors. Despite the enormous clonotypic diversity that resides within the naive T-cell pool, interindividual sharing of TCR sequences has been observed within mobilized T-cell responses specific for certain peptide–major histocompatibility complex (pMHC) antigens. The mechanisms that underlie this phenomenon have not been fully elucidated, however. A mechanism of convergent recombination has been proposed to account for the occurrence of shared, or “public,” TCRs in specific memory T-cell populations. According to this model, TCR sharing between individuals is directly related to TCR production frequency; this, in turn, is determined on a probabilistic basis by the relative generation efficiency of particular nucleotide and amino acid sequences during the recombination process. Here, we tested the key predictions of convergent recombination in a comprehensive evaluation of the naive CD8+ TCRβ repertoire in mice. Within defined segments of the naive CD8+ T-cell repertoire, TCRβ sequences with convergent features were (i) present at higher copy numbers within individual mice and (ii) shared between individual mice. Thus, the naive CD8+ T-cell repertoire is not flat, but comprises a hierarchy of recurrence rates for individual clonotypes that is determined by relative production frequencies. These findings provide a framework for understanding the early mobilization of public CD8+ T-cell clonotypes, which can exert profound biological effects during acute infectious processes.

126 citations

Journal ArticleDOI
TL;DR: Low seroreactivity in humans against simian- or chimpanzee-derived vectors compared with human-derived rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory are shown.
Abstract: Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell–mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. In this study we show low seroreactivity in humans against simian- (sAd11, sAd16) or chimpanzee-derived (chAd3, chAd63) compared with human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype, and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107–109 particle units), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least, as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFN-γ+TNF-α+IL-2+ and KLRG1+CD127−CD8+ T cells, but strikingly ∼30–80% of memory CD8+ T cells coexpressed CD127 and KLRG1. To further optimize CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ∼60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared with prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Abstract: CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.

2,978 citations

Journal ArticleDOI
TL;DR: This review discusses major advances in the understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.
Abstract: Dendritic cells (DCs) form a remarkable cellular network that shapes adaptive immune responses according to peripheral cues. After four decades of research, we now know that DCs arise from a hematopoietic lineage distinct from other leukocytes, establishing the DC system as a unique hematopoietic branch. Recent work has also established that tissue DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. This review discusses major advances in our understanding of the regulation of DC lineage commitment, differentiation, diversification, and function in situ.

1,921 citations

Journal ArticleDOI
TL;DR: Dendritic cells are an essential target in efforts to generate therapeutic immunity against cancer owing to their ability to control both immune tolerance and immunity.
Abstract: Cancer immunotherapy attempts to harness the power and specificity of the immune system to treat tumours. The molecular identification of human cancer-specific antigens has allowed the development of antigen-specific immunotherapy. In one approach, autologous antigen-specific T cells are expanded ex vivo and then re-infused into patients. Another approach is through vaccination; that is, the provision of an antigen together with an adjuvant to elicit therapeutic T cells in vivo. Owing to their properties, dendritic cells (DCs) are often called 'nature's adjuvants' and thus have become the natural agents for antigen delivery. After four decades of research, it is now clear that DCs are at the centre of the immune system owing to their ability to control both immune tolerance and immunity. Thus, DCs are an essential target in efforts to generate therapeutic immunity against cancer.

1,737 citations

Journal ArticleDOI
01 Sep 2008-Blood
TL;DR: Much of what is known about the 4 CD4 T-cell subsets is summarized, including the history of their discovery, their unique cytokine products and related functions, their distinctive expression of cell surface receptors and their characteristic transcription factors, the regulation of their fate determination, and the consequences of their abnormal activation.

1,615 citations

Journal ArticleDOI
TL;DR: The importance of using multiparameter flow cytometry to better understand the functional capacity of effector and memory T-cell responses, thereby enabling the development of preventative and therapeutic vaccine strategies for infections is highlighted.
Abstract: T cells mediate effector functions through a variety of mechanisms. Recently, multiparameter flow cytometry has allowed a simultaneous assessment of the phenotype and multiple effector functions of single T cells; the delineation of T cells into distinct functional populations defines the quality of the response. New evidence suggests that the quality of T-cell responses is crucial for determining the disease outcome to various infections. This Review highlights the importance of using multiparameter flow cytometry to better understand the functional capacity of effector and memory T-cell responses, thereby enabling the development of preventative and therapeutic vaccine strategies for infections.

1,483 citations