scispace - formally typeset
Search or ask a question
Author

Rowan Sutton

Bio: Rowan Sutton is an academic researcher from University of Reading. The author has contributed to research in topics: Sea surface temperature & Climate change. The author has an hindex of 57, co-authored 162 publications receiving 15913 citations. Previous affiliations of Rowan Sutton include University of Oxford & Natural Environment Research Council.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a suite of climate models are used to predict changes in surface air temperature on decadal timescales and regional spatial scales, and it is shown that the uncertainty for the next few decades is dominated by model uncertainty and internal variability that are potentially reducible through progress in climate science.
Abstract: Faced by the realities of a changing climate, decision makers in a wide variety of organizations are increasingly seeking quantitative predictions of regional and local climate. An important issue for these decision makers, and for organizations that fund climate research, is what is the potential for climate science to deliver improvements—especially reductions in uncertainty—in such predictions? Uncertainty in climate predictions arises from three distinct sources: internal variability, model uncertainty, and scenario uncertainty. Using data from a suite of climate models, we separate and quantify these sources. For predictions of changes in surface air temperature on decadal timescales and regional spatial scales, we show that uncertainty for the next few decades is dominated by sources (model uncertainty and internal variability) that are potentially reducible through progress in climate science. Furthermore, we find that model uncertainty is of greater importance than internal variability. Our findin...

2,052 citations

Journal ArticleDOI
01 Jul 2005-Science
TL;DR: New evidence is presented that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe.
Abstract: Recent extreme events such as the devastating 2003 European summer heat wave raise important questions about the possible causes of any underlying trends, or low-frequency variations, in regional climates. Here, we present new evidence that basin-scale changes in the Atlantic Ocean, probably related to the thermohaline circulation, have been an important driver of multidecadal variations in the summertime climate of both North America and western Europe. Our findings advance understanding of past climate changes and also have implications for decadal climate predictions.

1,288 citations

Journal ArticleDOI
TL;DR: In this paper, the authors quantify the sources of uncertainty in projections of regional (∼2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes.
Abstract: We separate and quantify the sources of uncertainty in projections of regional (∼2,500 km) precipitation changes for the twenty-first century using the CMIP3 multi-model ensemble, allowing a direct comparison with a similar analysis for regional temperature changes For decadal means of seasonal mean precipitation, internal variability is the dominant uncertainty for predictions of the first decade everywhere, and for many regions until the third decade ahead Model uncertainty is generally the dominant source of uncertainty for longer lead times Scenario uncertainty is found to be small or negligible for all regions and lead times, apart from close to the poles at the end of the century For the global mean, model uncertainty dominates at all lead times The signal-to-noise ratio (S/N) of the precipitation projections is highest at the poles but less than 1 almost everywhere else, and is far lower than for temperature projections In particular, the tropics have the highest S/N for temperature, but the lowest for precipitation We also estimate a ‘potential S/N’ by assuming that model uncertainty could be reduced to zero, and show that, for regional precipitation, the gains in S/N are fairly modest, especially for predictions of the next few decades This finding suggests that adaptation decisions will need to be made in the context of high uncertainty concerning regional changes in precipitation The potential to narrow uncertainty in regional temperature projections is far greater These conclusions on S/N are for the current generation of models; the real signal may be larger or smaller than the CMIP3 multi-model mean Also note that the S/N for extreme precipitation, which is more relevant for many climate impacts, may be larger than for the seasonal mean precipitation considered here

854 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the advances in our understanding of extratropical atmosphere-ocean interaction over the past decade and a half is examined, focusing on the atmospheric response to sea surface temperature anomalies.
Abstract: The advances in our understanding of extratropical atmosphere‐ocean interaction over the past decade and a half are examined, focusing on the atmospheric response to sea surface temperature anomalies. The main goal of the paper is to assess what was learned from general circulation model (GCM) experiments over the recent two decades or so. Observational evidence regarding the nature of the interaction and dynamical theory of atmospheric anomalies forced by surface thermal anomalies is reviewed. Three types of GCM experiments used to address this problem are then examined: models with fixed climatological conditions and idealized, stationary SST anomalies; models with seasonally evolving climatology forced with realistic, time-varying SST anomalies; and models coupled to an interactive ocean. From representative recent studies, it is argued that the extratropical atmosphere does respond to changes in underlying SST although the response is small compared to internal (unforced) variability. Two types of interactions govern the response. One is an eddy-mediated process, in which a baroclinic response to thermal forcing induces and combines with changes in the position or strength of the storm tracks. This process can lead to an equivalent barotropic response that feeds back positively on the ocean mixed layer temperature. The other is a linear, thermodynamic interaction in which an equivalent-barotropic low-frequency atmospheric anomaly forces a change in SST and then experiences reduced surface thermal damping due to the SST adjustment. Both processes contribute to an increase in variance and persistence of low-frequency atmospheric anomalies and, in fact, may act together in the natural system.

648 citations


Cited by
More filters
01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Book
01 Jun 2008
TL;DR: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources.
Abstract: The Intergovernmental Panel on Climate Change (IPCC) Technical Paper Climate Change and Water draws together and evaluates the information in IPCC Assessment and Special Reports concerning the impacts of climate change on hydrological processes and regimes, and on freshwater resources – their availability, quality, use and management. It takes into account current and projected regional key vulnerabilities, prospects for adaptation, and the relationships between climate change mitigation and water. Its objectives are:

3,108 citations

Journal ArticleDOI
14 Nov 1997-Science
TL;DR: In this paper, the North Atlantic deep sea cores reveal that abrupt shifts punctuated what is conventionally thought to have been a relatively stable Holocene climate, and they make up a series of climate shifts with a cyclicity close to 1470 ± 500 years, which is the most recent manifestation of a pervasive millennial-scale climate cycle operating independently of the glacial-interglacial climate state.
Abstract: Evidence from North Atlantic deep sea cores reveals that abrupt shifts punctuated what is conventionally thought to have been a relatively stable Holocene climate. During each of these episodes, cool, ice-bearing waters from north of Iceland were advected as far south as the latitude of Britain. At about the same times, the atmospheric circulation above Greenland changed abruptly. Pacings of the Holocene events and of abrupt climate shifts during the last glaciation are statistically the same; together, they make up a series of climate shifts with a cyclicity close to 1470 ± 500 years. The Holocene events, therefore, appear to be the most recent manifestation of a pervasive millennial-scale climate cycle operating independently of the glacial-interglacial climate state. Amplification of the cycle during the last glaciation may have been linked to the North Atlantic's thermohaline circulation.

2,979 citations

Journal ArticleDOI
TL;DR: The authors used satellite-observed night lights to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small.
Abstract: [1] We update the Goddard Institute for Space Studies (GISS) analysis of global surface temperature change, compare alternative analyses, and address questions about perception and reality of global warming. Satellite-observed night lights are used to identify measurement stations located in extreme darkness and adjust temperature trends of urban and periurban stations for nonclimatic factors, verifying that urban effects on analyzed global change are small. Because the GISS analysis combines available sea surface temperature records with meteorological station measurements, we test alternative choices for the ocean data, showing that global temperature change is sensitive to estimated temperature change in polar regions where observations are limited. We use simple 12 month (and n × 12) running means to improve the information content in our temperature graphs. Contrary to a popular misconception, the rate of warming has not declined. Global temperature is rising as fast in the past decade as in the prior 2 decades, despite year-to-year fluctuations associated with the El Nino-La Nina cycle of tropical ocean temperature. Record high global 12 month running mean temperature for the period with instrumental data was reached in 2010.

2,619 citations