scispace - formally typeset
Search or ask a question
Author

Roy D. Yates

Other affiliations: Louisiana State University, NEC
Bio: Roy D. Yates is an academic researcher from Rutgers University. The author has contributed to research in topics: Communication channel & Wireless network. The author has an hindex of 65, co-authored 267 publications receiving 18318 citations. Previous affiliations of Roy D. Yates include Louisiana State University & NEC.


Papers
More filters
Journal ArticleDOI
Roy D. Yates1
TL;DR: It is shown that systems in which transmitter powers are subject to maximum power limitations share these common properties, which permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized.
Abstract: In cellular wireless communication systems, transmitted power is regulated to provide each user an acceptable connection by limiting the interference caused by other users. Several models have been considered including: (1) fixed base station assignment where the assignment of users to base stations is fixed, (2) minimum power assignment where a user is iteratively assigned to the base station at which its signal to interference ratio is highest, and (3) diversity reception where a user's signal is combined from several or perhaps all base stations. For the above models, the uplink power control problem can be reduced to finding a vector p of users' transmitter powers satisfying p/spl ges/I(p) where the jth constraint p/sub j//spl ges/I/sub j/(p) describes the interference that user j must overcome to achieve an acceptable connection. This work unifies results found for these systems by identifying common properties of the interference constraints. It is also shown that systems in which transmitter powers are subject to maximum power limitations share these common properties. These properties permit a general proof of the synchronous and totally asynchronous convergence of the iteration p(t+1)=I(p(t)) to a unique fixed point at which total transmitted power is minimized. >

2,526 citations

Proceedings ArticleDOI
25 Mar 2012
TL;DR: A time-average age metric is employed for the performance evaluation of status update systems and the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors is shown.
Abstract: Increasingly ubiquitous communication networks and connectivity via portable devices have engendered a host of applications in which sources, for example people and environmental sensors, send updates of their status to interested recipients. These applications desire status updates at the recipients to be as timely as possible; however, this is typically constrained by limited network resources. In this paper, we employ a time-average age metric for the performance evaluation of status update systems. We derive general methods for calculating the age metric that can be applied to a broad class of service systems. We apply these methods to queue-theoretic system abstractions consisting of a source, a service facility and monitors, with the model of the service facility (physical constraints) a given. The queue discipline of first-come-first-served (FCFS) is explored. We show the existence of an optimal rate at which a source must generate its information to keep its status as timely as possible at all its monitors. This rate differs from those that maximize utilization (throughput) or minimize status packet delivery delay. While our abstractions are simpler than their real-world counterparts, the insights obtained, we believe, are a useful starting point in understanding and designing systems that support real time status updates.

1,879 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel and develop efficient algorithms to find the optimal update policy among all causal policies and establish sufficient and necessary conditions for the optimality of the zero-wait policy.
Abstract: In this paper, we study how to optimally manage the freshness of information updates sent from a source node to a destination via a channel. A proper metric for data freshness at the destination is the age-of-information , or simply age , which is defined as how old the freshest received update is, since the moment that this update was generated at the source node (e.g., a sensor). A reasonable update policy is the zero-wait policy, i.e., the source node submits a fresh update once the previous update is delivered, which achieves the maximum throughput and the minimum delay. Surprisingly, this zero-wait policy does not always minimize the age. This counter-intuitive phenomenon motivates us to study how to optimally control information updates to keep the data fresh and to understand when the zero-wait policy is optimal. We introduce a general age penalty function to characterize the level of dissatisfaction on data staleness and formulate the average age penalty minimization problem as a constrained semi-Markov decision problem with an uncountable state space. We develop efficient algorithms to find the optimal update policy among all causal policies and establish sufficient and necessary conditions for the optimality of the zero-wait policy. Our investigation shows that the zero-wait policy is far from the optimum if: 1) the age penalty function grows quickly with respect to the age; 2) the packet transmission times over the channel are positively correlated over time; or 3) the packet transmission times are highly random (e.g., following a heavy-tail distribution).

857 citations

Journal ArticleDOI
TL;DR: An age of information timeliness metric is formulated and a general result for the AoI that is applicable to a wide variety of multiple source service systems is derived that makes AoI evaluation to be comparable in complexity to finding the stationary distribution of a finite-state Markov chain.
Abstract: We examine multiple independent sources providing status updates to a monitor through simple queues. We formulate an age of information (AoI) timeliness metric and derive a general result for the AoI that is applicable to a wide variety of multiple source service systems. For first-come first-served and two types of last-come first-served systems with Poisson arrivals and exponential service times, we find the region of feasible average status ages for multiple updating sources. We then use these results to characterize how a service facility can be shared among multiple updating sources. A new simplified technique for evaluating the AoI in finite-state continuous-time queuing systems is also derived. Based on stochastic hybrid systems, this method makes AoI evaluation to be comparable in complexity to finding the stationary distribution of a finite-state Markov chain.

552 citations

Journal ArticleDOI
TL;DR: An encoding scheme in which transmitters dedicate some of their power to create artificial noise is proposed and shown to outperform both time-sharing and simple multiplexed transmission of the confidential messages.
Abstract: We study information-theoretic security for discrete memoryless interference and broadcast channels with independent confidential messages sent to two receivers. Confidential messages are transmitted to their respective receivers while ensuring mutual information-theoretic secrecy. That is, each receiver is kept in total ignorance with respect to the message intended for the other receiver. The secrecy level is measured by the equivocation rate at the eavesdropping receiver. In this paper, we present inner and outer bounds on secrecy capacity regions for these two communication systems. The derived outer bounds have an identical mutual information expression that applies to both channel models. The difference is in the input distributions over which the expression is optimized. The inner bound rate regions are achieved by random binning techniques. For the broadcast channel, a double-binning coding scheme allows for both joint encoding and preserving of confidentiality. Furthermore, we show that, for a special case of the interference channel, referred to as the switch channel, derived bounds meet. Finally, we describe several transmission schemes for Gaussian interference channels and derive their achievable rate regions while ensuring mutual information-theoretic secrecy. An encoding scheme in which transmitters dedicate some of their power to create artificial noise is proposed and shown to outperform both time-sharing and simple multiplexed transmission of the confidential messages.

549 citations


Cited by
More filters
Book
01 Jan 2005

9,038 citations

Journal ArticleDOI
TL;DR: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits persecond under a noninterference protocol.
Abstract: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is /spl Theta/(W/spl radic/An) bit-meters per second. Thus even under optimal circumstances, the throughput is only /spl Theta/(W//spl radic/n) bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

9,008 citations

Journal ArticleDOI
TL;DR: The novel functionalities and current research challenges of the xG networks are explained in detail, and a brief overview of the cognitive radio technology is provided and the xg network architecture is introduced.

6,608 citations

Journal ArticleDOI
Thomas L. Marzetta1
TL;DR: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval and a complete multi-cellular analysis yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve.
Abstract: A cellular base station serves a multiplicity of single-antenna terminals over the same time-frequency interval. Time-division duplex operation combined with reverse-link pilots enables the base station to estimate the reciprocal forward- and reverse-link channels. The conjugate-transpose of the channel estimates are used as a linear precoder and combiner respectively on the forward and reverse links. Propagation, unknown to both terminals and base station, comprises fast fading, log-normal shadow fading, and geometric attenuation. In the limit of an infinite number of antennas a complete multi-cellular analysis, which accounts for inter-cellular interference and the overhead and errors associated with channel-state information, yields a number of mathematically exact conclusions and points to a desirable direction towards which cellular wireless could evolve. In particular the effects of uncorrelated noise and fast fading vanish, throughput and the number of terminals are independent of the size of the cells, spectral efficiency is independent of bandwidth, and the required transmitted energy per bit vanishes. The only remaining impairment is inter-cellular interference caused by re-use of the pilot sequences in other cells (pilot contamination) which does not vanish with unlimited number of antennas.

6,248 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations