scispace - formally typeset
Search or ask a question
Author

Roy G. Smith

Bio: Roy G. Smith is an academic researcher from Scripps Research Institute. The author has contributed to research in topics: Receptor & Ghrelin. The author has an hindex of 79, co-authored 335 publications receiving 26878 citations. Previous affiliations of Roy G. Smith include Vanderbilt University & University of Texas Health Science Center at Houston.


Papers
More filters
Journal ArticleDOI
16 Aug 1996-Science
TL;DR: A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs.
Abstract: Small synthetic molecules termed growth hormone secretagogues (GHSs) act on the pituitary gland and the hypothalamus to stimulate and amplify pulsatile growth hormone (GH) release. A heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPC-R) of the pituitary and arcuate ventro-medial and infundibular hypothalamus of swine and humans was cloned and was shown to be the target of the GHSs. On the basis of its pharmacological and molecular characterization, this GPC-R defines a neuroendocrine pathway for the control of pulsatile GH release and supports the notion that the GHSs mimic an undiscovered hormone.

2,064 citations

Journal ArticleDOI
20 Feb 2003-Neuron
TL;DR: Using electrophysiological recordings, ghrelin stimulated the activity of arcuate NPY neurons and mimicked the effect of NPY in the paraventricular nucleus of the hypothalamus (PVH), thus representing a novel regulatory circuit controlling energy homeostasis.

1,578 citations

Journal ArticleDOI
TL;DR: The demonstration of hypothalamic and pituitary localization of the GHS-R is consistent with its role in regulating growth hormone release and the expression of the receptor in other central and peripheral regions may implicate its involvement in additional as yet undefined physiological functions.

1,109 citations

Journal ArticleDOI
TL;DR: In contrast to wild-type mice, acute treatment of Ghsr-null mice with ghrelin stimulated neither GH release nor food intake, showing that the GHSR is a biologically relevantghrelin receptor and suggesting that chronic treatment with gh Relin antagonists will have little effect on growth or appetite.
Abstract: Synthetic agonists of the growth hormone secretagogue receptor (GHSR) rejuvenate the pulsatile pattern of GH-release in the elderly, and increase lean but not fat mass in obese subjects. Screening of tissue extracts in a cell line engineered to overexpress the GHSR led to the identification of a natural agonist called ghrelin. Paradoxically, this hormone was linked to obesity. However, it had not been directly shown that the GHSR is a physiologically relevant ghrelin receptor. Furthermore, ghrelin's structure is significantly different from the synthetic agonist (MK-0677) used to expression-clone the GHSR. To address whether the GHSR mediates ghrelin's stimulatory effects on GH release and appetite, we generated Ghsr-null mice. In contrast to wild-type mice, acute treatment of Ghsr-null mice with ghrelin stimulated neither GH release nor food intake, showing that the GHSR is a biologically relevant ghrelin receptor. Nevertheless, Ghsr-null mice are not dwarfs; their appetite and body composition are comparable to that of wild-type littermates. Furthermore, in contrast to suggestions that ghrelin regulates leptin and insulin secretion, fasting-induced changes in serum levels of leptin and insulin are identical in wild-type and null mice. Serum insulin-like growth factor 1 levels and body weights of mature Ghsr-null mice are modestly reduced compared to wild-type littermates, which is consistent with ghrelin's property as an amplifier of GH pulsatility and its speculated role in establishing an insulin-like growth factor 1 set-point for maintaining anabolic metabolism. Our results suggest that chronic treatment with ghrelin antagonists will have little effect on growth or appetite.

675 citations

Journal ArticleDOI
TL;DR: The results establish an in vivo orexigenic function for NPY and AgRP, mediating the effect of ghrelin, as well as the involvement of the melanocortin pathway inghrelin signaling.
Abstract: Ghrelin, a stomach-derived orexigenic hormone, has stimulated great interest as a potential target for obesity control. Pharmacological evidence indicates that ghrelin's effects on food intake are mediated by neuropeptide Y (NPY) and agouti-related protein (AgRP) in the central nervous system. These include intracerebroventricular application of antibodies to neutralize NPY and AgRP, and the application of an NPY Y1 receptor antagonist, which blocks some of the orexigenic effects of ghrelin. Here we describe treatment of Agrp(-/-);Npy(-/-) and Mc3r(-/-);Mc4r(-/-) double knockout mice as well as Npy(-/-) and Agrp(-/-) single knockout mice with either ghrelin or an orally active nonpeptide ghrelin agonist. The data demonstrate that NPY and AgRP are required for the orexigenic effects of ghrelin, as well as the involvement of the melanocortin pathway in ghrelin signaling. Our results outline a functional interaction between the NPY and AgRP pathways. Although deletion of either NPY or AgRP caused only a modest or nondetectable effect, ablation of both ligands completely abolished the orexigenic action of ghrelin. Our results establish an in vivo orexigenic function for NPY and AgRP, mediating the effect of ghrelin.

668 citations


Cited by
More filters
Journal ArticleDOI
09 Dec 1999-Nature
TL;DR: The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelIn, a peptide specifically releases GH both in vivo and in vitro.
Abstract: Small synthetic molecules called growth-hormone secretagogues (GHSs) stimulate the release of growth hormone (GH) from the pituitary. They act through GHS-R, a G-protein-coupled receptor for which the ligand is unknown. Recent cloning of GHS-R strongly suggests that an endogenous ligand for the receptor does exist and that there is a mechanism for regulating GH release that is distinct from its regulation by hypothalamic growth-hormone-releasing hormone (GHRH). We now report the purification and identification in rat stomach of an endogenous ligand specific for GHS-R. The purified ligand is a peptide of 28 amino acids, in which the serine 3 residue is n-octanoylated. The acylated peptide specifically releases GH both in vivo and in vitro, and O-n-octanoylation at serine 3 is essential for the activity. We designate the GH-releasing peptide 'ghrelin' (ghre is the Proto-Indo-European root of the word 'grow'). Human ghrelin is homologous to rat ghrelin apart from two amino acids. The occurrence of ghrelin in both rat and human indicates that GH release from the pituitary may be regulated not only by hypothalamic GHRH, but also by ghrelin.

8,073 citations

Journal ArticleDOI
19 Oct 2000-Nature
TL;DR: It is proposed that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary, suggesting an involvement in regulation of energy balance.
Abstract: The discovery of the peptide hormone ghrelin, an endogenous ligand for the growth hormone secretagogue (GHS) receptor, yielded the surprising result that the principal site of ghrelin synthesis is the stomach and not the hypothalamus Although ghrelin is likely to regulate pituitary growth hormone (GH) secretion along with GH-releasing hormone and somatostatin, GHS receptors have also been identified on hypothalamic neurons and in the brainstem Apart from potential paracrine effects, ghrelin may thus offer an endocrine link between stomach, hypothalamus and pituitary, suggesting an involvement in regulation of energy balance Here we show that peripheral daily administration of ghrelin caused weight gain by reducing fat utilization in mice and rats Intracerebroventricular administration of ghrelin generated a dose-dependent increase in food intake and body weight Rat serum ghrelin concentrations were increased by fasting and were reduced by re-feeding or oral glucose administration, but not by water ingestion We propose that ghrelin, in addition to its role in regulating GH secretion, signals the hypothalamus when an increase in metabolic efficiency is necessary

3,894 citations

Journal ArticleDOI
15 Feb 2001-Nature
TL;DR: A structural polymeric material with the ability to autonomically heal cracks is reported, which incorporates a microencapsulated healing agent that is released upon crack intrusion and polymerization of the healing agent is triggered by contact with an embedded catalyst, bonding the crack faces.
Abstract: Structural polymers are susceptible to damage in the form of cracks, which form deep within the structure where detection is difficult and repair is almost impossible. Cracking leads to mechanical degradation of fibre-reinforced polymer composites; in microelectronic polymeric components it can also lead to electrical failure. Microcracking induced by thermal and mechanical fatigue is also a long-standing problem in polymer adhesives. Regardless of the application, once cracks have formed within polymeric materials, the integrity of the structure is significantly compromised. Experiments exploring the concept of self-repair have been previously reported, but the only successful crack-healing methods that have been reported so far require some form of manual intervention. Here we report a structural polymeric material with the ability to autonomically heal cracks. The material incorporates a microencapsulated healing agent that is released upon crack intrusion. Polymerization of the healing agent is then triggered by contact with an embedded catalyst, bonding the crack faces. Our fracture experiments yield as much as 75% recovery in toughness, and we expect that our approach will be applicable to other brittle materials systems (including ceramics and glasses).

3,786 citations

Journal ArticleDOI
TL;DR: This article reviews what is known about the prevalence, incidence, risk factors, and prognosis of PD from epidemiological studies and suggests that major gene mutations cause only a small proportion of all cases.
Abstract: The causes of Parkinson's disease (PD), the second most common neurodegenerative disorder, are still largely unknown. Current thinking is that major gene mutations cause only a small proportion of all cases and that in most cases, non-genetic factors play a part, probably in interaction with susceptibility genes. Numerous epidemiological studies have been done to identify such non-genetic risk factors, but most were small and methodologically limited. Larger, well-designed prospective cohort studies have only recently reached a stage at which they have enough incident patients and person-years of follow-up to investigate possible risk factors and their interactions. In this article, we review what is known about the prevalence, incidence, risk factors, and prognosis of PD from epidemiological studies.

3,474 citations

Journal ArticleDOI
11 Jan 2001-Nature
TL;DR: It is shown that ghrelin is involved in the hypothalamic regulation of energy homeostasis and probably has a function in growth regulation by stimulating feeding and release of growth hormone.
Abstract: Ghrelin is an acylated peptide that stimulates the release of growth hormone from the pituitary. Ghrelin-producing neurons are located in the hypothalamus, whereas ghrelin receptors are expressed in various regions of the brain, which is indicative of central-and as yet undefined-physiological functions. Here we show that ghrelin is involved in the hypothalamic regulation of energy homeostasis. Intracerebroventricular injections of ghrelin strongly stimulated feeding in rats and increased body weight gain. Ghrelin also increased feeding in rats that are genetically deficient in growth hormone. Anti-ghrelin immunoglobulin G robustly suppressed feeding. After intracerebroventricular ghrelin administration, Fos protein, a marker of neuronal activation, was found in regions of primary importance in the regulation of feeding, including neuropeptide Y6 (NPY) neurons and agouti-related protein (AGRP) neurons. Antibodies and antagonists of NPY and AGRP abolished ghrelin-induced feeding. Ghrelin augmented NPY gene expression and blocked leptin-induced feeding reduction, implying that there is a competitive interaction between ghrelin and leptin in feeding regulation. We conclude that ghrelin is a physiological mediator of feeding, and probably has a function in growth regulation by stimulating feeding and release of growth hormone.

3,400 citations