scispace - formally typeset
Search or ask a question
Author

Ru Cao

Bio: Ru Cao is an academic researcher from University of North Carolina at Chapel Hill. The author has contributed to research in topics: Histone methyltransferase & Histone H3. The author has an hindex of 19, co-authored 20 publications receiving 9915 citations.

Papers
More filters
Journal ArticleDOI
01 Nov 2002-Science
TL;DR: The purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex, is reported, and it is demonstrated that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27).
Abstract: Polycomb group (PcG) proteins play important roles in maintaining the silent state of HOX genes. Recent studies have implicated histone methylation in long-term gene silencing. However, a connection between PcG-mediated gene silencing and histone methylation has not been established. Here we report the purification and characterization of an EED-EZH2 complex, the human counterpart of the Drosophila ESC-E(Z) complex. We demonstrate that the complex specifically methylates nucleosomal histone H3 at lysine 27 (H3-K27). Using chromatin immunoprecipitation assays, we show that H3-K27 methylation colocalizes with, and is dependent on, E(Z) binding at an Ultrabithorax (Ubx) Polycomb response element (PRE), and that this methylation correlates with Ubx repression. Methylation on H3-K27 facilitates binding of Polycomb (PC), a component of the PRC1 complex, to histone H3 amino-terminal tail. Thus, these studies establish a link between histone methylation and PcG-mediated gene silencing.

3,565 citations

Journal ArticleDOI
04 Apr 2003-Science
TL;DR: It is demonstrated that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation.
Abstract: The Polycomb group (PcG) protein Eed is implicated in regulation of imprinted X-chromosome inactivation in extraembryonic cells but not of random X inactivation in embryonic cells. The Drosophila homolog of the Eed-Ezh2 PcG protein complex achieves gene silencing through methylation of histone H3 on lysine 27 (H3-K27), which suggests a role for H3-K27 methylation in imprinted X inactivation. Here we demonstrate that transient recruitment of the Eed-Ezh2 complex to the inactive X chromosome (Xi) occurs during initiation of X inactivation in both extraembryonic and embryonic cells and is accompanied by H3-K27 methylation. Recruitment of the complex and methylation on the Xi depend on Xist RNA but are independent of its silencing function. Together, our results suggest a role for Eed-Ezh2-mediated H3-K27 methylation during initiation of both imprinted and random X inactivation and demonstrate that H3-K27 methylation is not sufficient for silencing of the Xi.

1,248 citations

Journal ArticleDOI
TL;DR: In addition to being involved in Hox gene silencing, the ESC-E(Z) complex and its associated histone methyltransferase activity are important in other biological processes including X-inactivation, germline development, stem cell pluripotency and cancer metastasis.

878 citations

Journal ArticleDOI
TL;DR: The results suggest that EZH2-mediated H3-K27 methylation functions upstream of PRC1 and establishes a critical role for Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing.

871 citations

Journal ArticleDOI
TL;DR: This study establishes a critical role of SUZ12 in H3-lysine 27 methylation and Hox gene silencing and finds that the HMTase activity requires a minimum of three components-EZH2, EED, and SUZ 12-while AEBP2 is required for optimal enzymatic activity.

798 citations


Cited by
More filters
Journal ArticleDOI
21 Apr 2006-Cell
TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.

5,131 citations

Journal ArticleDOI
14 Jun 2007-Nature
TL;DR: Functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project are reported, providing convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts.
Abstract: We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.

5,091 citations

Journal ArticleDOI
TL;DR: Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists, and can be embedded into any tool that performs gene list analysis.
Abstract: System-wide profiling of genes and proteins in mammalian cells produce lists of differentially expressed genes/proteins that need to be further analyzed for their collective functions in order to extract new knowledge. Once unbiased lists of genes or proteins are generated from such experiments, these lists are used as input for computing enrichment with existing lists created from prior knowledge organized into gene-set libraries. While many enrichment analysis tools and gene-set libraries databases have been developed, there is still room for improvement. Here, we present Enrichr, an integrative web-based and mobile software application that includes new gene-set libraries, an alternative approach to rank enriched terms, and various interactive visualization approaches to display enrichment results using the JavaScript library, Data Driven Documents (D3). The software can also be embedded into any tool that performs gene list analysis. We applied Enrichr to analyze nine cancer cell lines by comparing their enrichment signatures to the enrichment signatures of matched normal tissues. We observed a common pattern of up regulation of the polycomb group PRC2 and enrichment for the histone mark H3K27me3 in many cancer cell lines, as well as alterations in Toll-like receptor and interlukin signaling in K562 cells when compared with normal myeloid CD33+ cells. Such analyses provide global visualization of critical differences between normal tissues and cancer cell lines but can be applied to many other scenarios. Enrichr is an easy to use intuitive enrichment analysis web-based tool providing various types of visualization summaries of collective functions of gene lists. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr .

4,713 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: The evolution of long noncoding RNAs and their roles in transcriptional regulation, epigenetic gene regulation, and disease are reviewed.

4,277 citations

Journal ArticleDOI
TL;DR: Dysregulation of these ncRNAs is being found to have relevance not only to tumorigenesis, but also to neurological, cardiovascular, developmental and other diseases, and there is great interest in therapeutic strategies to counteract these perturbations.
Abstract: The role of non-coding RNAs (ncRNAs) in disease is best understood for microRNAs in cancer. However, there is increasing interest in the disease-related roles of other ncRNAs — including piRNAs, snoRNAs, T-UCRs and lncRNAs — and in using this knowledge for therapy.

4,016 citations