scispace - formally typeset
Search or ask a question
Author

Ruben Baetens

Bio: Ruben Baetens is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Vacuum insulated panel & Photovoltaic system. The author has an hindex of 18, co-authored 43 publications receiving 3882 citations. Previous affiliations of Ruben Baetens include Norwegian University of Science and Technology & SINTEF.

Papers
More filters
Journal ArticleDOI
TL;DR: The Robust Envelope Construction Details for Buildings of the 21st Century (ROBUST) project as mentioned in this paper was supported by the Research Council of Norway, AF Gruppen, Glava, Hunton Fiber as, Icopal, Isola, Jackon, maxit, Moelven ByggModul, Ramboll, Skanska, Statsbygg and Takprodusentenes forskningsgruppe through the SINTEF/NTNU research project.

1,127 citations

Journal ArticleDOI
TL;DR: In this article, a review of the knowledge of aerogel insulation in general and for building applications in particular is given, where the possibility of high transmittances in the solar spectrum is of high interest for the construction sector.

819 citations

Journal ArticleDOI
TL;DR: In this paper, a state-of-the-art review is given on the knowledge of phase change materials (PCMs) today for building applications, and the authors propose a solution for reducing the energy consumption of buildings.

784 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an accepted and refereed manuscript to the article, post-print, published with a Creative Commons Attribution Non-Commercial No Derivatives License.

371 citations

Journal ArticleDOI
TL;DR: In this article, a tool for Integrated District Energy Assessment by Simulation (IDEAS) is developed, which allows simultaneous transient simulation of thermal and electrical systems at both building and feeder level.

214 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.
Abstract: Civilization continues to be transformed by our ability to harness energy beyond human and animal power. A series of industrial and agricultural revolutions have allowed an increasing fraction of the world population to heat and light their homes, fertilize and irrigate their crops, connect to one another and travel around the world. All of this progress is fuelled by our ability to find, extract and use energy with ever increasing dexterity. Research in materials science is contributing to progress towards a sustainable future based on clean energy generation, transmission and distribution, the storage of electrical and chemical energy, energy efficiency, and better energy management systems.

2,894 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized previous works on latent thermal energy storage in building applications, covering PCMs, the impregnation methods, current building applications and their thermal performance analyses, as well as numerical simulation of buildings with PCMs.

1,569 citations

Journal ArticleDOI
TL;DR: In this article, the authors make an exhaustive technical review of the building envelope components and respective improvements from an energy efficiency perspective, including different types of energy efficient walls such as Trombe walls, ventilated walls, and glazed walls.
Abstract: A significant portion of the total primary energy is consumed by today's buildings in developed countries In many of these buildings, the energy consumption can be significantly reduced by adopting energy efficiency strategies Due to environmental concerns and the high cost of energy in recent years there has been a renewed interest in building energy efficiency This article strives to make an exhaustive technical review of the building envelope components and respective improvements from an energy efficiency perspective Different types of energy efficient walls such as Trombe walls, ventilated walls, and glazed walls are discussed Performance of different fenestration technologies including aerogel, vacuum glazing and frames are presented Advances in energy efficient roofs including the contemporary green roofs, photovoltaic roofs, radiant-transmittive barrier and evaporative roof cooling systems are discussed Various types of thermal insulation materials are enumerated along with selection criteria of these materials The effects of thermal mass and phase change material on building cooling/heating loads and peak loads are discussed Application of thermal mass as an energy saving method is more effective in places where the outside ambient air temperature differences between the days and nights are high Air tightness and infiltration of building envelopes are discussed as they play a crucial role in the energy consumption of a building Energy efficiency approaches sometimes might not require additional capital investment For example, a holistic energy efficient building design approach can reduce the size of mechanical systems compensating the additional cost of energy efficiency features

939 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the next generation of smart windows based on organic materials which can change their properties by reflecting or transmitting excess solar energy (infrared radiation) in such a way that comfortable indoor temperatures can be maintained throughout the year.
Abstract: Windows are vital elements in the built environment that have a large impact on the energy consumption in indoor spaces, affecting heating and cooling and artificial lighting requirements. Moreover, they play an important role in sustaining human health and well-being. In this review, we discuss the next generation of smart windows based on organic materials which can change their properties by reflecting or transmitting excess solar energy (infrared radiation) in such a way that comfortable indoor temperatures can be maintained throughout the year. Moreover, we place emphasis on windows that maintain transparency in the visible region so that additional energy is not required to retain natural illumination. We discuss a number of ways to fabricate windows which remain as permanent infrared control elements throughout the year as well as windows which can alter transmission properties in presence of external stimuli like electric fields, temperature and incident light intensity. We also show the potential impact of these windows on energy saving in different climate conditions.

877 citations

Journal ArticleDOI
TL;DR: A review of the most of the existing ZEB definitions and various approaches towards possible ZEB calculation methodologies is presented and discussed in this article in order to facilitate the development of a consistent ZEB definition and a robust energy calculation methodology.

858 citations