scispace - formally typeset
Search or ask a question
Author

Ruben S. Luis

Bio: Ruben S. Luis is an academic researcher from National Institute of Information and Communications Technology. The author has contributed to research in topics: Transmission (telecommunications) & Wavelength-division multiplexing. The author has an hindex of 23, co-authored 184 publications receiving 2165 citations.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
03 Dec 2015
TL;DR: In this paper, a wideband optical comb source with 10THz bandwidth for 2.15 Pb/s transmission over 31km of a new, homogeneous 22-core single-mode multi-core fiber using 399 × 25GHz spaced, 6.468 Tb/S spatial-super-channels comprising 24.5GBaud PDM-64QAM modulation in each core.
Abstract: We use a wideband optical comb source with 10THz bandwidth for 2.15 Pb/s transmission over 31km of a new, homogeneous 22-core single-mode multi-core fiber using 399 × 25GHz spaced, 6.468 Tb/s spatial-super-channels comprising 24.5GBaud PDM-64QAM modulation in each core.

283 citations

Journal ArticleDOI
20 Sep 2021
TL;DR: In this paper, the main classifications and features of novel SDM fibers such as multicore fibers (MCFs), multimode fibers, few-mode MCFs, and coupled-core MCFs are discussed.
Abstract: Research on space-division multiplexing (SDM) came to prominence in early 2010 being primarily proposed as a means of multiplying the information-carrying capacity of optical fibers at the same time as increasing efficiency through resource sharing. Proposed SDM transmission systems range from parallel single-mode fibers with shared amplifier pump lasers to the full spatial integration of transceiver hardware, signal processing, and amplification around a fiber with over 100 spatial channels comprising multiple cores each carrying multiple modes. In this paper, we review progress in SDM research. We first outline the main classifications and features of novel SDM fibers such as multicore fibers (MCFs), multimode fibers, few-mode MCFs, and coupled-core MCFs. We review research achievements of each fiber type before discussing digital-signal processing, amplifier technology, and milestones of transmission and networking demonstrations. Finally, we draw comparisons between fiber types before discussing the current trends and speculate on future developments and applications beyond optical data transmission.

200 citations

Journal ArticleDOI
TL;DR: Experimental verification of QKD co-propagating with a large number of wavelength division multiplexing (WDM) coherent data channels is presented, demonstrating more than a factor of 10 increase in the number of WDM channels and more than 90 times higher classical bitrate.
Abstract: Quantum key distribution (QKD) can offer communication with unconditional security and is a promising technology to protect next generation communication systems. For QKD to see commercial success, several key challenges have to be solved, such as integrating QKD signals into existing fiber optical networks. In this paper, we present experimental verification of QKD co-propagating with a large number of wavelength division multiplexing (WDM) coherent data channels. We show successful secret key generation over 24 h for a continuous-variable QKD channel jointly transmitted with 100 WDM channels of erbium doped fiber amplified polarization multiplexed 16-ary quadrature amplitude modulation signals amounting to a datarate of 18.3 Tbit/s. Compared to previous co-propagation results in the C-band, we demonstrate more than a factor of 10 increase in the number of WDM channels and more than 90 times higher classical bitrate, showing the co-propagation with Tbit/s data-carrying channels. The security of communications networks is a fundamental challenge of the current era, particularly with the move towards quantum communications. The authors perform joint transmission of quantum key distribution and up to 100 classical communication channels in the same fiber and report an average secret key rate of 27.2 kbit/s over a 24 h operation period where the classical data rate amounted to 18.3 Tbit/s.

127 citations

Proceedings ArticleDOI
22 Mar 2015
TL;DR: The design and characterization of a 3-type heterogeneous 36-core, 3-mode fiber with record spatial channel count and density is described and transmission measurements in all 108 spatial channels using 40×100GHz spaced 25GBaud DP-QPSK signals are performed.
Abstract: We describe the design and characterization of a 3-type heterogeneous 36-core, 3-mode fiber with record spatial channel count and density and perform transmission measurements in all 108 spatial channels using 40×100GHz spaced 25GBaud DP-QPSK signals.

113 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an evaluation of the time and modulation frequency-varying power transfer of crosstalk in a homogeneous multi-core fiber (MCF).
Abstract: This study presents an evaluation of the time and modulation frequency-varying power transfer of crosstalk in a homogeneous multi-core fiber (MCF). Experimental observations using a seven-core MCF over a period of 10 h show that, unlike localized crosstalk, distributed crosstalk power transfer has a pronounced modulation frequency response which changes substantially over time. This response is described using an adaptation of previous crosstalk models for MCFs showing that it results from the random time-varying interference between crosstalk contributions generated at a discrete number of phase matching points along the fiber. The model is used to produce simplified empirical models to characterize its average and variance. It is shown that both these quantities are nonzero and nearly constant for modulation frequencies above the inverse of the time skew between cores. These observations are validated by experimental data.

96 citations


Cited by
More filters
01 Jan 2015
TL;DR: This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework and learns what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages.
Abstract: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications, and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book’s practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include MATLAB computations, and the numerous end-of-chapter exercises include computational assignments. MATLAB/GNU Octave source code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.

1,102 citations

Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations

Journal ArticleDOI
TL;DR: In this paper, the basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization and phase vortex generation and (de)multiplexing are introduced.
Abstract: An optical vortex having an isolated point singularity is associated with the spatial structure of light waves. A polarization vortex (vector beam) with a polarization singularity has spatially variant polarizations. A phase vortex with phase singularity or screw dislocation has a spiral phase front. The optical vortex has recently gained increasing interest in optical trapping, optical tweezers, laser machining, microscopy, quantum information processing, and optical communications. In this paper, we review recent advances in optical communications using optical vortices. First, basic concepts of polarization/phase vortex modulation and multiplexing in communications and key techniques of polarization/phase vortex generation and (de)multiplexing are introduced. Second, free-space and fiber optical communications using optical vortex modulation and optical vortex multiplexing are presented. Finally, key challenges and perspectives of optical communications using optical vortices are discussed. It is expected that optical vortices exploiting the space physical dimension of light waves might find more interesting applications in optical communications and interconnects.

523 citations

Journal ArticleDOI
TL;DR: Focusing on the optical transport and switching layer, aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexed of spatial and spectral superchannels are covered.
Abstract: Celebrating the 20th anniversary of Optics Express, this paper reviews the evolution of optical fiber communication systems, and through a look at the previous 20 years attempts to extrapolate fiber-optic technology needs and potential solution paths over the coming 20 years. Well aware that 20-year extrapolations are inherently associated with great uncertainties, we still hope that taking a significantly longer-term view than most texts in this field will provide the reader with a broader perspective and will encourage the much needed out-of-the-box thinking to solve the very significant technology scaling problems ahead of us. Focusing on the optical transport and switching layer, we cover aspects of large-scale spatial multiplexing, massive opto-electronic arrays and holistic optics-electronics-DSP integration, as well as optical node architectures for switching and multiplexing of spatial and spectral superchannels.

498 citations

Proceedings ArticleDOI
03 Dec 2015
TL;DR: In this paper, a wideband optical comb source with 10THz bandwidth for 2.15 Pb/s transmission over 31km of a new, homogeneous 22-core single-mode multi-core fiber using 399 × 25GHz spaced, 6.468 Tb/S spatial-super-channels comprising 24.5GBaud PDM-64QAM modulation in each core.
Abstract: We use a wideband optical comb source with 10THz bandwidth for 2.15 Pb/s transmission over 31km of a new, homogeneous 22-core single-mode multi-core fiber using 399 × 25GHz spaced, 6.468 Tb/s spatial-super-channels comprising 24.5GBaud PDM-64QAM modulation in each core.

283 citations