scispace - formally typeset
Search or ask a question
Author

Rucong Yu

Other affiliations: Chinese Academy of Sciences
Bio: Rucong Yu is an academic researcher from China Meteorological Administration. The author has contributed to research in topics: Precipitation & Monsoon. The author has an hindex of 35, co-authored 85 publications receiving 5535 citations. Previous affiliations of Rucong Yu include Chinese Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors reveal the atmospheric water vapor transports associated with typical anomalous summer rainfall patterns in China and show that the origins of water vapor supply related to anomalous rainfall patterns are different from those related to the normal monsoon rainfall.
Abstract: [1] This paper attempts to reveal the atmospheric water vapor transports associated with typical anomalous summer rainfall patterns in China. The results show that origins of water vapor supply related to anomalous rainfall patterns are different from those related to the normal monsoon rainfall. Anomalous pattern 1, with a heavier rainbelt along the middle and lower reaches of the Yangtze River valley, follows from a convergence of the tropical southwest water vapor transport with the midlatitude northeast water vapor transport; the tropical water vapor transport comes directly from the Bay of Bengal and the South China Sea but originally from the Philippine Sea. The anomalous water vapor transport is associated with a southwestward extension of the western Pacific subtropical high and a southward shift of the upper East Asian jet stream. Anomalous pattern 2, with a main rainbelt along the Huaihe River valley, is supported by the convergence of the subtropical southwest water vapor with the midlatitude water vapor transport. The subtropical branch comes directly from the South China Sea but originally from the East China Sea and the adjacent subtropical Pacific to the further east along 20–25N. The background large-scale circulation change includes a northwestward extension of the western Pacific subtropical high and an eastward shift of the upper jet stream. Although the cross-equator flows including the Somali jet supply abundant water vapor for the normal condition of June, July, and August rainfall over China, the tropical water vapor transports related to typical anomalous rainfall anomalies originate from the tropical western Pacific Ocean. The northward transport of anomalous warm water vapor occurs mainly in the lower troposphere, while the transport of midlatitude cold water vapor occurs briefly in the upper troposphere.

631 citations

Journal ArticleDOI
TL;DR: In this paper, the authors suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH.
Abstract: The western Pacific subtropical high (WPSH) is closely related to Asian climate. Previous examination of changes in the WPSH found a westward extension since the late 1970s, which has contributed to the inter-decadal transition of East Asian climate. The reason for the westward extension is unknown, however. The present study suggests that this significant change of WPSH is partly due to the atmosphere's response to the observed Indian Ocean-western Pacific (IWP) warming. Coordinated by a European Union's Sixth Framework Programme, Understanding the Dynamics of the Coupled Climate System (DYNAMITE), five AGCMs were forced by identical idealized sea surface temperature patterns representative of the IWP warming and cooling. The results of these numerical experiments suggest that the negative heating in the central and eastern tropical Pacific and increased convective heating in the equatorial Indian Ocean/ Maritime Continent associated with IWP warming are in favor of the westward extension of WPSH. The SST changes in IWP influences the Walker circulation, with a subsequent reduction of convections in the tropical central and eastern Pacific, which then forces an ENSO/Gill-type response that modulates the WPSH. The monsoon diabatic heating mechanism proposed by Rodwell and Hoskins plays a secondary reinforcing role in the westward extension of WPSH. The low-level equatorial flank of WPSH is interpreted as a Kelvin response to monsoon condensational heating, while the intensified poleward flow along the western flank of WPSH is in accord with Sverdrup vorticity balance. The IWP warming has led to an expansion of the South Asian high in the upper troposphere, as seen in the reanalysis.

468 citations

Journal ArticleDOI
TL;DR: In this article, a distinctive strong tropospheric cooling trend is found in East Asia during July and August, with the cooling trend most prominent at the upper troposphere around 300 hPa.
Abstract: [1] A distinctive strong tropospheric cooling trend is found in East Asia during July and August. The cooling trend is most prominent at the upper troposphere around 300 hPa. Accompanying this summer cooling the upper-level westerly jet stream over East Asia shifts southward and the East Asian summer monsoon weakens, which results in the tendency toward increased droughts in northern China and flood in Yangtze River Valley. The observational evidences raise the possibility that the East Asian summer tropospheric cooling links to the stratosphere temperature changes and the interaction between the troposphere and stratosphere.

413 citations

Journal ArticleDOI
TL;DR: In this article, the satellite data was used to characterize East Asian summer monsoon rainfall, including spatial patterns in June-August mean precipitation amount, frequency, and intensity, as well as the diurnal and semidiurnal cycles.
Abstract: Hourly or 3-hourly precipitation data from Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) and Tropical Rainfall Measuring Mission (TRMM) 3B42 satellite products and rain gauge records are used to characterize East Asian summer monsoon rainfall, including spatial patterns in June–August (JJA) mean precipitation amount, frequency, and intensity, as well as the diurnal and semidiurnal cycles. The results show that the satellite products are comparable to rain gauge data in revealing the spatial patterns of JJA precipitation amount, frequency, and intensity, with pattern correlation coefficients for five subregions ranging from 0.66 to 0.94. The pattern correlation of rainfall amount is higher than that of frequency and intensity. Relative to PERSIANN, the TRMM product has a better resemblance with rain gauge observations in terms of both the pattern correlation and rootmean-square error. The satellite products overestimate rainfall frequency but underestimate its intensity. The diurnal (24 h) harmonic dominates subdaily variations of precipitation over most of eastern China. A late-afternoon maximum over southeastern and northeastern China and a near-midnight maximum over the eastern periphery of the Tibetan Plateau are seen in the rain gauge data. The diurnal phases of precipitation frequency and intensity are similar to those of rainfall amount in most regions, except for the middle Yangtze River valley. Both frequency and intensity contribute to the diurnal variation of rainfall amount over most of eastern China. The contribution of frequency to the diurnal cycle of rainfall amount is generally overestimated in both satellite products. Both satellite products capture well the nocturnal peak over the eastern periphery of the Tibetan Plateau and the late-afternoon peak in southern and northeastern China. Rain gauge data over the region between the Yangtze and Yellow Rivers show two peaks, with one in the early morning and the other later in the afternoon. The satellite products only capture the major late-afternoon peak.

304 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the diurnal variations of summer precipitation over contiguous China using hourly rain-gauge data from 588 stations during 1991-2004 and found that summer precipitation has large diurnal variation with considerable regional features.
Abstract: [1] Diurnal variations of summer precipitation over contiguous China are studied using hourly rain-gauge data from 588 stations during 1991–2004. It is found that summer precipitation over contiguous China has large diurnal variations with considerable regional features. Over southern inland China and northeastern China summer precipitation peaks in the late afternoon, while over most of the Tibetan Plateau and its east periphery it peaks around midnight. The diurnal phase changes eastward along the Yangtze River Valley, with a midnight maximum in the upper valley, an early morning peak in the middle valley, and a late afternoon maximum in the lower valley. Summer precipitation over the region between the Yangtze and Yellow Rivers has two diurnal peaks: one in the early morning and another in the late afternoon.

303 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wiley et al. as mentioned in this paper reviewed recent literature on the last millennium, followed by an update on global aridity changes from 1950 to 2008, and presented future aridity is presented based on recent studies and their analysis of model simulations.
Abstract: This article reviews recent literature on drought of the last millennium, followed by an update on global aridity changes from 1950 to 2008. Projected future aridity is presented based on recent studies and our analysis of model simulations. Dry periods lasting for years to decades have occurred many times during the last millennium over, for example, North America, West Africa, and East Asia. These droughts were likely triggered by anomalous tropical sea surface temperatures (SSTs), with La Ni˜ na-like SST anomalies leading to drought in North America, and El-Ni˜ no-like SSTs causing drought in East China. Over Africa, the southward shift of the warmest SSTs in the Atlantic and warming in the Indian Ocean are responsible for the recent Sahel droughts. Local feedbacks may enhance and prolong drought. Global aridity has increased substantially since the 1970s due to recent drying over Africa, southern Europe, East and South Asia, and eastern Australia. Although El Ni˜ no-Southern Oscillation (ENSO), tropical Atlantic SSTs, and Asian monsoons have played a large role in the recent drying, recent warming has increased atmospheric moisture demand and likely altered atmospheric circulation patterns, both contributing to the drying. Climate models project increased aridity in the 21 st century over most of Africa, southern Europe and the Middle East, most of the Americas, Australia, and Southeast Asia. Regions like the United States have avoided prolonged droughts during the last 50 years due to natural climate variations, but might see persistent droughts in the next 20–50 years. Future efforts to predict drought will depend on models’ ability to predict tropical SSTs. 2010 JohnWiley &Sons,Ltd.WIREs Clim Change2010 DOI:10.1002/wcc.81

2,651 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the climate projections of 11 earth system models that performed both emission-driven and concentration-driven RCP8.5 simulations and found that seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m−2) when driven by CO2 emissions than for the concentration driven scenarios.
Abstract: In the context of phase 5 of the Coupled Model Intercomparison Project, most climate simulations use prescribed atmospheric CO2 concentration and therefore do not interactively include the effect of carbon cycle feedbacks. However, the representative concentration pathway 8.5 (RCP8.5) scenario has additionally been run by earth system models with prescribed CO2 emissions. This paper analyzes the climate projections of 11 earth system models (ESMs) that performed both emission-driven and concentration-driven RCP8.5 simulations. When forced by RCP8.5 CO2 emissions, models simulate a large spread in atmospheric CO2; the simulated 2100 concentrations range between 795 and 1145 ppm. Seven out of the 11 ESMs simulate a larger CO2 (on average by 44 ppm, 985 ± 97 ppm by 2100) and hence higher radiative forcing (by 0.25 W m−2) when driven by CO2 emissions than for the concentration-driven scenarios (941 ppm). However, most of these models already overestimate the present-day CO2, with the present-day biase...

905 citations

Journal ArticleDOI
TL;DR: In this paper, a review examines the evidence for sub-daily extreme rainfall intensification due to anthropogenic climate change and describes the current physical understanding of the association between sub-day extreme rainfall intensity and atmospheric temperature.
Abstract: Evidence that extreme rainfall intensity is increasing at the global scale has strengthened considerably in recent years Research now indicates that the greatest increases are likely to occur in short-duration storms lasting less than a day, potentially leading to an increase in the magnitude and frequency of flash floods This review examines the evidence for subdaily extreme rainfall intensification due to anthropogenic climate change and describes our current physical understanding of the association between subdaily extreme rainfall intensity and atmospheric temperature We also examine the nature, quality, and quantity of information needed to allow society to adapt successfully to predicted future changes, and discuss the roles of observational and modeling studies in helping us to better understand the physical processes that can influence subdaily extreme rainfall characteristics We conclude by describing the types of research required to produce a more thorough understanding of the relationships between local-scale thermodynamic effects, large-scale atmospheric circulation, and subdaily extreme rainfall intensity

862 citations