scispace - formally typeset
Search or ask a question
Author

Rudolph A. Abramovitch

Bio: Rudolph A. Abramovitch is an academic researcher from Clemson University. The author has contributed to research in topics: Pyridine & Electrophilic aromatic substitution. The author has an hindex of 29, co-authored 269 publications receiving 3633 citations. Previous affiliations of Rudolph A. Abramovitch include University of Saskatchewan & University of Alabama.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of applications of microwave energy in ORGANIC CHEMISTRY, focusing on the application of MICROWAVE ENERGY in organic preparation and procedures.

380 citations

Journal ArticleDOI
TL;DR: It is suggested that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time.

76 citations

Book ChapterDOI
TL;DR: Differences of opinion exist as to whether the 2- or the 4-position should be more reactive in pyridine, and some calculations indicate that the attack at C-4 can occur more readily than atC-2, while others predict exactly the opposite.
Abstract: Publisher Summary This chapter focuses on the effects of substituents present in a pyridine nucleus upon the position and ease of attack at carbon by a suitable heterolytic or homolytic reagent. Reactions involving pyridine N-oxides and pyridinium salts are discussed. The various theoretical approaches agree with the simple resonance theory representation of the valence structure of pyridine in predicting that nucleophilic substitution should take place readily at the 2-, 4-, or 6-positions but not at the 3- or 5-position. The pyridinium cation should be even more susceptible to nucleophilic attack. Again, differences of opinion exist as to whether the 2- or the 4-position should be more reactive. Some calculations indicate that the attack at C-4 can occur more readily than at C-2, while others predict exactly the opposite, depending not only upon the use of ground state π-electron densities or atom localization energies for predictive purposes, but also upon the values of the parameters used in the calculations. Finally, the chapter illustrates intramolecular cyclizations onto a pyridine ring.

61 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review highlights recent applications of controlled microwave heating in modern organic synthesis, and discusses some of the underlying phenomena and issues involved.
Abstract: Although fire is now rarely used in synthetic chemistry, it was not until Robert Bunsen invented the burner in 1855 that the energy from this heat source could be applied to a reaction vessel in a focused manner. The Bunsen burner was later superseded by the isomantle, oil bath, or hot plate as a source for applying heat to a chemical reaction. In the past few years, heating and driving chemical reactions by microwave energy has been an increasingly popular theme in the scientific community. This nonclassical heating technique is slowly moving from a laboratory curiosity to an established technique that is heavily used in both academia and industry. The efficiency of "microwave flash heating" in dramatically reducing reaction times (from days and hours to minutes and seconds) is just one of the many advantages. This Review highlights recent applications of controlled microwave heating in modern organic synthesis, and discusses some of the underlying phenomena and issues involved.

3,044 citations

Journal ArticleDOI
TL;DR: In this Review, the fundamental characteristics of azide chemistry and current developments are presented and the focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles.
Abstract: Since the discovery of organic azides by Peter Griess more than 140 years ago, numerous syntheses of these energy-rich molecules have been developed. In more recent times in particular, completely new perspectives have been developed for their use in peptide chemistry, combinatorial chemistry, and heterocyclic synthesis. Organic azides have assumed an important position at the interface between chemistry, biology, medicine, and materials science. In this Review, the fundamental characteristics of azide chemistry and current developments are presented. The focus will be placed on cycloadditions (Huisgen reaction), aza ylide chemistry, and the synthesis of heterocycles. Further reactions such as the aza-Wittig reaction, the Sundberg rearrangement, the Staudinger ligation, the Boyer and Boyer-Aube rearrangements, the Curtius rearrangement, the Schmidt rearrangement, and the Hemetsberger rearrangement bear witness to the versatility of modern azide chemistry.

1,766 citations

Journal ArticleDOI
TL;DR: The present review summarizes the data that appeared in the literature following publication of previous reviews in 1996 and 2002 and is organized according to the classes of organic polyvalent iodine compounds with emphasis on their synthetic application.
Abstract: Starting from the early 1990’s, the chemistry of polyvalent iodine organic compounds has experienced an explosive development. This surging interest in iodine compounds is mainly due to the very useful oxidizing properties of polyvalent organic iodine reagents, combined with their benign environmental character and commercial availability. Iodine(III) and iodine(V) derivatives are now routinely used in organic synthesis as reagents for various selective oxidative transformations of complex organic molecules. Several areas of hypervalent organoiodine chemistry have recently attracted especially active interest and research activity. These areas, in particular, include the synthetic applications of 2-iodoxybenzoic acid (IBX) and similar oxidizing reagents based on the iodine(V) derivatives, the development and synthetic use of polymer-supported and recyclable polyvalent iodine reagents, the catalytic applications of organoiodine compounds, and structural studies of complexes and supramolecular assemblies of polyvalent iodine compounds. The chemistry of polyvalent iodine has previously been covered in four books1–4 and several comprehensive review papers.5–17 Numerous reviews on specific classes of polyvalent iodine compounds and their synthetic applications have recently been published.18–61 Most notable are the specialized reviews on [hydroxy(tosyloxy)iodo]benzene,41 the chemistry and synthetic applications of iodonium salts,29,36,38,42,43,46,47,54,55 the chemistry of iodonium ylides,56–58 the chemistry of iminoiodanes,28 hypervalent iodine fluorides,27 electrophilic perfluoroalkylations,44 perfluoroorgano hypervalent iodine compounds,61 the chemistry of benziodoxoles,24,45 polymer-supported hypervalent iodine reagents,30 hypervalent iodine-mediated ring contraction reactions,21 application of hypervalent iodine in the synthesis of heterocycles,25,40 application of hypervalent iodine in the oxidation of phenolic compounds,32,34,50–53,60 oxidation of carbonyl compounds with organohypervalent iodine reagents,37 application of hypervalent iodine in (hetero)biaryl coupling reactions,31 phosphorolytic reactivity of o-iodosylcarboxylates,33 coordination of hypervalent iodine,19 transition metal catalyzed reactions of hypervalent iodine compounds,18 radical reactions of hypervalent iodine,35,39 stereoselective reactions of hypervalent iodine electrophiles,48 catalytic applications of organoiodine compounds,20,49 and synthetic applications of pentavalent iodine reagents.22,23,26,59 The main purpose of the present review is to summarize the data that appeared in the literature following publication of our previous reviews in 1996 and 2002. In addition, a brief introductory discussion of the most important earlier works is provided in each section. The review is organized according to the classes of organic polyvalent iodine compounds with emphasis on their synthetic application. Literature coverage is through July 2008.

1,518 citations

Journal ArticleDOI

1,321 citations