scispace - formally typeset
Search or ask a question
Author

Rudolph van der Merwe

Bio: Rudolph van der Merwe is an academic researcher from Apple Inc.. The author has contributed to research in topics: Kalman filter & Extended Kalman filter. The author has an hindex of 21, co-authored 39 publications receiving 5270 citations. Previous affiliations of Rudolph van der Merwe include Oregon Health & Science University.

Papers
More filters
Proceedings Article
01 Jan 2000
TL;DR: This paper proposes a new particle filter based on sequential importance sampling that outperforms standard particle filtering and other nonlinear filtering methods very substantially and is in agreement with the theoretical convergence proof for the algorithm.
Abstract: In this paper, we propose a new particle filter based on sequential importance sampling. The algorithm uses a bank of unscented filters to obtain the importance proposal distribution. This proposal has two very "nice" properties. Firstly, it makes efficient use of the latest available information and, secondly, it can have heavy tails. As a result, we find that the algorithm outperforms standard particle filtering and other nonlinear filtering methods very substantially. This experimental finding is in agreement with the theoretical convergence proof for the algorithm. The algorithm also includes resampling and (possibly) Markov chain Monte Carlo (MCMC) steps.

1,681 citations

01 Jan 2004
TL;DR: This work has consistently shown that there are large performance benefits to be gained by applying Sigma-Point Kalman filters to areas where EKFs have been used as the de facto standard in the past, as well as in new areas where the use of the EKF is impossible.
Abstract: Probabilistic inference is the problem of estimating the hidden variables (states or parameters) of a system in an optimal and consistent fashion as a set of noisy or incomplete observations of the system becomes available online. The optimal solution to this problem is given by the recursive Bayesian estimation algorithm which recursively updates the posterior density of the system state as new observations arrive. This posterior density constitutes the complete solution to the probabilistic inference problem, and allows us to calculate any “optimal” estimate of the state. Unfortunately, for most real-world problems, the optimal Bayesian recursion is intractable and approximate solutions must be used. Within the space of approximate solutions, the extended Kalman filter (EKF) has become one of the most widely used algorithms with applications in state, parameter and dual estimation. Unfortunately, the EKF is based on a sub-optimal implementation of the recursive Bayesian estimation framework applied to Gaussian random variables. This can seriously affect the accuracy or even lead to divergence of any inference system that is based on the EKF or that uses the EKF as a component part. Recently a number of related novel, more accurate and theoretically better motivated algorithmic alternatives to the EKF have surfaced in the literature, with specific application to state estimation for automatic control. We have extended these algorithms, all based on derivativeless deterministic sampling based approximations of the relevant Gaussian statistics, to a family of algorithms called Sigma-Point Kalman Filters (SPKF). Furthermore, we successfully expanded the use of this group of algorithms (SPKFs) within the general field of probabilistic inference and machine learning, both as stand-alone filters and as subcomponents of more powerful sequential Monte Carlo methods (particle filters). We have consistently shown that there are large performance benefits to be gained by applying Sigma-Point Kalman filters to areas where EKFs have been used as the de facto standard in the past, as well as in new areas where the use of the EKF is impossible.

1,116 citations

Book ChapterDOI
13 Mar 2002

888 citations

09 Jun 2004
TL;DR: The improved state estimation performance of the SPKF is demonstrated by applying it to the problem of loosely coupled GPS/INS integration and an approximate 30% error reduction in both attitude and position estimates relative to the baseline EKF implementation is demonstrated.
Abstract: Core to integrated navigation systems is the concept of fusing noisy observations from GPS, Inertial Measurement Units (IMU), and other available sensors. The current industry standard and most widely used algorithm for this purpose is the extended Kalman filter (EKF) [6]. The EKF combines the sensor measurements with predictions coming from a model of vehicle motion (either dynamic or kinematic), in order to generate an estimate of the current navigational state (position, velocity, and attitude). This paper points out the inherent shortcomings in using the EKF and presents, as an alternative, a family of improved derivativeless nonlinear Kalman filters called sigma-point Kalman filters (SPKF). We demonstrate the improved state estimation performance of the SPKF by applying it to the problem of loosely coupled GPS/INS integration. A novel method to account for latency in the GPS updates is also developed for the SPKF (such latency compensation is typically inaccurate or not practical with the EKF). A UAV (rotor-craft) test platform is used to demonstrate the results. Performance metrics indicate an approximate 30% error reduction in both attitude and position estimates relative to the baseline EKF implementation.

242 citations

Proceedings Article
29 Nov 1999
TL;DR: This paper points out the flaws in using the EKF, and proposes an improvement based on a new approach called the unscented transformation (UT) [3], which achieves a substantial performance gain with the same order of computational complexity as that of the standard EKf.
Abstract: Dual estimation refers to the problem of simultaneously estimating the state of a dynamic system and the model which gives rise to the dynamics. Algorithms include expectation-maximization (EM), dual Kalman filtering, and joint Kalman methods. These methods have recently been explored in the context of nonlinear modeling, where a neural network is used as the functional form of the unknown model. Typically, an extended Kalman filter (EKF) or smoother is used for the part of the algorithm that estimates the clean state given the current estimated model. An EKF may also be used to estimate the weights of the network. This paper points out the flaws in using the EKF, and proposes an improvement based on a new approach called the unscented transformation (UT) [3]. A substantial performance gain is achieved with the same order of computational complexity as that of the standard EKF. The approach is illustrated on several dual estimation methods.

235 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters are reviewed.
Abstract: Increasingly, for many application areas, it is becoming important to include elements of nonlinearity and non-Gaussianity in order to model accurately the underlying dynamics of a physical system. Moreover, it is typically crucial to process data on-line as it arrives, both from the point of view of storage costs as well as for rapid adaptation to changing signal characteristics. In this paper, we review both optimal and suboptimal Bayesian algorithms for nonlinear/non-Gaussian tracking problems, with a focus on particle filters. Particle filters are sequential Monte Carlo methods based on point mass (or "particle") representations of probability densities, which can be applied to any state-space model and which generalize the traditional Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are introduced within a generic framework of the sequential importance sampling (SIS) algorithm. These are discussed and compared with the standard EKF through an illustrative example.

11,409 citations

Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

Journal ArticleDOI
TL;DR: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed, which employs a metric derived from the Bhattacharyya coefficient as similarity measure, and uses the mean shift procedure to perform the optimization.
Abstract: A new approach toward target representation and localization, the central component in visual tracking of nonrigid objects, is proposed. The feature histogram-based target representations are regularized by spatial masking with an isotropic kernel. The masking induces spatially-smooth similarity functions suitable for gradient-based optimization, hence, the target localization problem can be formulated using the basin of attraction of the local maxima. We employ a metric derived from the Bhattacharyya coefficient as similarity measure, and use the mean shift procedure to perform the optimization. In the presented tracking examples, the new method successfully coped with camera motion, partial occlusions, clutter, and target scale variations. Integration with motion filters and data association techniques is also discussed. We describe only a few of the potential applications: exploitation of background information, Kalman tracking using motion models, and face tracking.

4,996 citations

Proceedings ArticleDOI
01 Oct 2000
TL;DR: The unscented Kalman filter (UKF) as discussed by the authors was proposed by Julier and Uhlman (1997) for nonlinear control problems, including nonlinear system identification, training of neural networks, and dual estimation.
Abstract: This paper points out the flaws in using the extended Kalman filter (EKE) and introduces an improvement, the unscented Kalman filter (UKF), proposed by Julier and Uhlman (1997). A central and vital operation performed in the Kalman filter is the propagation of a Gaussian random variable (GRV) through the system dynamics. In the EKF the state distribution is approximated by a GRV, which is then propagated analytically through the first-order linearization of the nonlinear system. This can introduce large errors in the true posterior mean and covariance of the transformed GRV, which may lead to sub-optimal performance and sometimes divergence of the filter. The UKF addresses this problem by using a deterministic sampling approach. The state distribution is again approximated by a GRV, but is now represented using a minimal set of carefully chosen sample points. These sample points completely capture the true mean and covariance of the GRV, and when propagated through the true nonlinear system, captures the posterior mean and covariance accurately to the 3rd order (Taylor series expansion) for any nonlinearity. The EKF in contrast, only achieves first-order accuracy. Remarkably, the computational complexity of the UKF is the same order as that of the EKF. Julier and Uhlman demonstrated the substantial performance gains of the UKF in the context of state-estimation for nonlinear control. Machine learning problems were not considered. We extend the use of the UKF to a broader class of nonlinear estimation problems, including nonlinear system identification, training of neural networks, and dual estimation problems. In this paper, the algorithms are further developed and illustrated with a number of additional examples.

3,903 citations