scispace - formally typeset
Search or ask a question
Author

Ruediger Salowsky

Bio: Ruediger Salowsky is an academic researcher from Agilent Technologies. The author has contributed to research in topics: RNA integrity number & RNA. The author has an hindex of 4, co-authored 6 publications receiving 2265 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.
Abstract: The integrity of RNA molecules is of paramount importance for experiments that try to reflect the snapshot of gene expression at the moment of RNA extraction. Until recently, there has been no reliable standard for estimating the integrity of RNA samples and the ratio of 28S:18S ribosomal RNA, the common measure for this purpose, has been shown to be inconsistent. The advent of microcapillary electrophoretic RNA separation provides the basis for an automated high-throughput approach, in order to estimate the integrity of RNA samples in an unambiguous way. A method is introduced that automatically selects features from signal measurements and constructs regression models based on a Bayesian learning technique. Feature spaces of different dimensionality are compared in the Bayesian framework, which allows selecting a final feature combination corresponding to models with high posterior probability. This approach is applied to a large collection of electrophoretic RNA measurements recorded with an Agilent 2100 bioanalyzer to extract an algorithm that describes RNA integrity. The resulting algorithm is a user-independent, automated and reliable procedure for standardization of RNA quality control that allows the calculation of an RNA integrity number (RIN). Our results show the importance of taking characteristics of several regions of the recorded electropherogram into account in order to get a robust and reliable prediction of RNA integrity, especially if compared to traditional methods.

2,406 citations

Journal ArticleDOI
TL;DR: The utility of LoaC systems to enable and augment systems biology investigations are described and improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis are illustrated.
Abstract: On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysis to achieve rapid analysis times (< 120 s). This work describes the utility of LoaC systems to enable and augment systems biology investigations. RNA quality, as assessed by an RNA integrity number score, is compared to existing quality control (QC) measurements. High-throughput DNA analysis of multiplex PCR samples is used to stratify gene sets for disease discovery. Finally, the applicability of a high-throughput LoaC system for assessing protein purification is demonstrated. The improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis are illustrated.

37 citations

Patent
29 Mar 2004
TL;DR: In this article, the quality of a biomolecule sample is determined by extracting a number of prescribed features from the measured data using data analysis, and determining the quality value from the extracted features using a quality algorithm.
Abstract: Disclosed is determining the quality, expressed in terms of a quality value, of an biomolecule sample, based on measured data of the biomolecule sample, by extracting a number of prescribed features from the measured data using data analysis, and determining the quality value from the extracted features using a quality algorithm.

11 citations

Journal Article
TL;DR: The RIN has been developed using neural networks by “teaching” this algorithm with a large number of RNA integrity data and it was found that the RIN is more reliable than the ribosomal ratio, when assessing the integrity of RNA samples.
Abstract: 1649 RNA quality assessment has been identified as one of the most critical elements in order to obtain meaningful gene expression data via microarray or real-time PCR experiments. Current advances in microfluidics have improved RNA quality measurements tremendously by allowing a more detailed look at RNA degradation patterns by providing electrophoretic traces of RNA samples. However, the interpretation of such electropherograms still requires a certain level of experience and can vary from one researcher to the next. A so-called “RNA integrity number” (RIN) algorithm is introduced that assigns a user-independent integrity number to each RNA sample. The RIN has been developed using neural networks by “teaching” this algorithm with a large number of RNA integrity data. It was found that the RIN is more reliable than the ribosomal ratio, when assessing the integrity of RNA samples. The RIN is shown to be largely independent of RNA concentration, instrument (Agilent 2100 bioanalyzer), and most importantly, the origin of the RNA sample. Using the RIN, researchers can work towards standardization of the important RNA integrity measurement ensuring reproducibility and reliability of gene expression experiments.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A series of RT-qPCR protocols are described that illustrate the essential technical steps required to generate quantitative data that are reliable and reproducible in molecular medicine, biotechnology, microbiology and diagnostics.
Abstract: The real-time reverse transcription polymerase chain reaction (RT-qPCR) addresses the evident requirement for quantitative data analysis in molecular medicine, biotechnology, microbiology and diagnostics and has become the method of choice for the quantification of mRNA. Although it is often described as a "gold" standard, it is far from being a standard assay. The significant problems caused by variability of RNA templates, assay designs and protocols, as well as inappropriate data normalization and inconsistent data analysis, are widely known but also widely disregarded. As a first step towards standardization, we describe a series of RT-qPCR protocols that illustrate the essential technical steps required to generate quantitative data that are reliable and reproducible. We would like to emphasize, however, that RT-qPCR data constitute only a snapshot of information regarding the quantity of a given transcript in a cell or tissue. Any assessment of the biological consequences of variable mRNA levels must include additional information regarding regulatory RNAs, protein levels and protein activity. The entire protocol described here, encompassing all stages from initial assay design to reliable qPCR data analysis, requires approximately 15 h.

2,066 citations

Journal ArticleDOI
TL;DR: Loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia are described.
Abstract: Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.

1,112 citations

Journal ArticleDOI
TL;DR: The question as to what extent different activation states of microglia exist in the human central nervous system is discussed, which tools can be used to identify them and emerging evidence for such changes in ageing and in Alzheimer's disease is discussed.
Abstract: Microglia in the central nervous system are usually maintained in a quiescent state. When activated, they can perform many diverse functions which may be either beneficial or harmful depending on the situation. Although microglial activation may be accompanied by changes in morphology, morphological changes cannot accurately predict the function being undertaken by a microglial cell. Studies of peripheral macrophages and in vitro and animal studies of microglia have resulted in the definition of specific activation states: M1 (classical activation) and M2 (sometimes subdivided into alternative activation and acquired deactivation). Some authors have suggested that these might be an overlapping continuum of functions rather than discrete categories. In this review, we consider translational aspects of our knowledge of microglia: specifically, we discuss the question as to what extent different activation states of microglia exist in the human central nervous system, which tools can be used to identify them and emerging evidence for such changes in ageing and in Alzheimer's disease.

806 citations

Journal ArticleDOI
TL;DR: Droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil are described, which should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has approximately 500x higher throughput than conventional microtiter plate assays.

796 citations

Journal ArticleDOI
TL;DR: A strategy to rapidly and efficiently isolate ribosome-associated mRNA transcripts from any cell type in vivo is described and the application of this technique is demonstrated in brain using neuron-specific Cre recombinase-expressing mice and in testis using a Sertoli cell Cre recomb inase- expressing mouse.
Abstract: Gene profiling techniques allow the assay of transcripts from organs, tissues, and cells with an unprecedented level of coverage. However, most of these approaches are still limited by the fact that organs and tissues are composed of multiple cell types that are each unique in their patterns of gene expression. To identify the transcriptome from a single cell type in a complex tissue, investigators have relied upon physical methods to separate cell types or in situ hybridization and immunohistochemistry. Here, we describe a strategy to rapidly and efficiently isolate ribosome-associated mRNA transcripts from any cell type in vivo. We have created a mouse line, called RiboTag, which carries an Rpl22 allele with a floxed wild-type C-terminal exon followed by an identical C-terminal exon that has three copies of the hemagglutinin (HA) epitope inserted before the stop codon. When the RiboTag mouse is crossed to a cell-type-specific Cre recombinase-expressing mouse, Cre recombinase activates the expression of epitope-tagged ribosomal protein RPL22ha, which is incorporated into actively translating polyribosomes. Immunoprecipitation of polysomes with a monoclonal antibody against HA yields ribosome-associated mRNA transcripts from specific cell types. We demonstrate the application of this technique in brain using neuron-specific Cre recombinase-expressing mice and in testis using a Sertoli cell Cre recombinase-expressing mouse.

760 citations