scispace - formally typeset
Search or ask a question
Author

Ruei-Min Lu

Other affiliations: National Defense Medical Center
Bio: Ruei-Min Lu is an academic researcher from Academia Sinica. The author has contributed to research in topics: Drug delivery & Medicine. The author has an hindex of 8, co-authored 15 publications receiving 1013 citations. Previous affiliations of Ruei-Min Lu include National Defense Medical Center.
Topics: Drug delivery, Medicine, Pandemic, Virology, Antibody

Papers
More filters
Journal ArticleDOI
TL;DR: The preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation are outlined.
Abstract: It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.

1,025 citations

Journal ArticleDOI
TL;DR: The latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences are summarized.
Abstract: Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

243 citations

Journal ArticleDOI
TL;DR: In a tumor xenograft model, anti-c-Met immunoliposome was found to selectively increase tumor accumulation of a chemotherapeutic drug and enhance its antitumor activity.

138 citations

Journal ArticleDOI
TL;DR: The expression of EpCAM may be regulated by epigenetic mechanisms, and it is strongly associated with the maintenance of the undifferentiated state of hESCs, suggesting that it might be used as a surface marker for hESC.

126 citations

Journal ArticleDOI
TL;DR: In this paper , the authors highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic and highlight the use of mAbs as surveillance tools that can be used to prevent the spread of CoV-19.
Abstract: The coronavirus disease 2019 (COVID-19) pandemic is an exceptional public health crisis that demands the timely creation of new therapeutics and viral detection. Owing to their high specificity and reliability, monoclonal antibodies (mAbs) have emerged as powerful tools to treat and detect numerous diseases. Hence, many researchers have begun to urgently develop Ab-based kits for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Ab drugs for use as COVID-19 therapeutic agents. The detailed structure of the SARS-CoV-2 spike protein is known, and since this protein is key for viral infection, its receptor-binding domain (RBD) has become a major target for therapeutic Ab development. Because SARS-CoV-2 is an RNA virus with a high mutation rate, especially under the selective pressure of aggressively deployed prophylactic vaccines and neutralizing Abs, the use of Ab cocktails is expected to be an important strategy for effective COVID-19 treatment. Moreover, SARS-CoV-2 infection may stimulate an overactive immune response, resulting in a cytokine storm that drives severe disease progression. Abs to combat cytokine storms have also been under intense development as treatments for COVID-19. In addition to their use as drugs, Abs are currently being utilized in SARS-CoV-2 detection tests, including antigen and immunoglobulin tests. Such Ab-based detection tests are crucial surveillance tools that can be used to prevent the spread of COVID-19. Herein, we highlight some key points regarding mAb-based detection tests and treatments for the COVID-19 pandemic.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation are outlined.
Abstract: It has been more than three decades since the first monoclonal antibody was approved by the United States Food and Drug Administration (US FDA) in 1986, and during this time, antibody engineering has dramatically evolved. Current antibody drugs have increasingly fewer adverse effects due to their high specificity. As a result, therapeutic antibodies have become the predominant class of new drugs developed in recent years. Over the past five years, antibodies have become the best-selling drugs in the pharmaceutical market, and in 2018, eight of the top ten bestselling drugs worldwide were biologics. The global therapeutic monoclonal antibody market was valued at approximately US$115.2 billion in 2018 and is expected to generate revenue of $150 billion by the end of 2019 and $300 billion by 2025. Thus, the market for therapeutic antibody drugs has experienced explosive growth as new drugs have been approved for treating various human diseases, including many cancers, autoimmune, metabolic and infectious diseases. As of December 2019, 79 therapeutic mAbs have been approved by the US FDA, but there is still significant growth potential. This review summarizes the latest market trends and outlines the preeminent antibody engineering technologies used in the development of therapeutic antibody drugs, such as humanization of monoclonal antibodies, phage display, the human antibody mouse, single B cell antibody technology, and affinity maturation. Finally, future applications and perspectives are also discussed.

1,025 citations

Journal ArticleDOI
TL;DR: Overcoming Limitations in Nanoparticle Drug Delivery: Triggered, Intravascular Release to Improve Drug Penetration into Tumors and Design Considerations for Tumour-Targeted Nanoparticles.
Abstract: 1.1. Cancer and Early Detection Cancer is the second most common cause of death in the United States, trailing only heart disease in incidence. Despite significant worldwide investment in research, cancer remains responsible for 1 in 4 deaths in developed countries.1 Globally, over 14 million cancer diagnoses were reported in 2012, a figure expected to increase to over 22 million cases per annum in the next two decades.2 Estimated to kill over 1/2 million U.S. citizens, and with over 1.6 million new cases predicted to be diagnosed this year,3 cancer continues to present a major, yet unmet challenge to healthcare both globally and in the United States. Cancer emerges from our own tissues, complicating both detection and treatment methods due to the similarities between the diseased tissue and healthy tissue.4,5 Despite this fact, the mortality rate from cancer is often greatly reduced by early detection of the disease. For example, non-small-cell lung cancer is responsible for the most cancer related deaths worldwide, with patients in the advanced stages of the disease having only 5–15% and <2% 5-year survival rates for stage III and IV patients, respectively.6 In contrast, patients who start therapy in the early stages of the disease (stage I) have markedly improved survival rates, with an 80% overall 5-year survival rate.6 Consequently, early diagnosis is essential to improving cancer patient prognosis. At present, clinical detection of cancer primarily relies on imaging techniques or the morphological analysis of cells that are suspected to be diseased (cytology) or tissues (histopathology). Imaging techniques applied to cancer detection, including X-ray, mammography, computed tomography (CT), magnetic resonance imaging (MRI), endoscopy, and ultrasound, have low sensitivity and are limited in their ability to differentiate between benign and malignant lesions.7,8 While cytology, such as testing for cervical cancer via a Pap smear or occult blood detection, may be used to distinguish between healthy and diseased cells or tissues, it is not effective at detecting cancer at early stages. Similarly, histopathology, which generally relies on taking a biopsy of a suspected tumor, is typically used to probe the malignancy of tissues that are identified through alternative imaging techniques, such as CT or MRI, and may not be used alone to detect cancer in its early stages. As such, the development of assays and methods for early detection of cancer, before the disease becomes symptomatic, presents a major challenge. Recent research within the field of nanotechnology has focused on addressing the limitations of the currently available methods for cancer diagnosis. Certain nanoparticle probes possess several unique properties that are advantageous for use in the detection of cancer at the early stages. In this review, we will discuss the advances in the development of nanoparticle-based methods for the detection of cancer by fluorescence spectroscopy. We will divide this topic into three categories: techniques that are designed for (1) the detection of extracellular cancer biomarkers, (2) the detection of cancer cells, and (3) the detection of cancerous tissues in vivo. We will discuss these strategies within the context of the nanoparticle probe used as well as the recognition moieties applied in each approach. Ultimately, the translation of these methods from the laboratory to the clinic may enable earlier detection of cancer and could extend patient survival through the ability to administer therapeutic treatment in the early stages of the disease. While this review provides a comprehensive overview of the nanoparticle probes that are used to detect cancer in vitro and in vivo through fluorescence, there are several other relevant reviews that may be of interest to our readers, who may refer to the references for more generalized reviews of nanomaterials used for diagnostics and therapy,9–12 or more detailed insight into the specific types of nanoparticle probes (i.e., quantum dots,13 gold nanoparticles,14,15 upconversion nanoparticles,16 polymer dots,17,18 silica nanoparticles,19 polymeric nanoparticles, 20 etc.) for cancer diagnosis.

808 citations

Journal ArticleDOI
TL;DR: Targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications are summarized.
Abstract: Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications.

739 citations

Journal ArticleDOI
TL;DR: In this paper, a review outlines pathogenic mechanisms that seem to be common to both hepatitis B virus and hepatitis C virus and suggest innovative approaches to the prevention and treatment of HCC.
Abstract: Hepatocellular carcinoma (HCC) is a highly lethal cancer, with increasing worldwide incidence, that is mainly associated with chronic hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infections. There are few effective treatments partly because the cell- and molecular-based mechanisms that contribute to the pathogenesis of this tumour type are poorly understood. This Review outlines pathogenic mechanisms that seem to be common to both viruses and which suggest innovative approaches to the prevention and treatment of HCC.

682 citations

Journal ArticleDOI
07 May 2020
TL;DR: This Primer by Ramos-Casals and colleagues summarizes the epidemiology, mechanisms, diagnosis and treatment of immune-related adverse events and should be prescribed carefully to reduce the potential of short-term and long-term complications.
Abstract: Cancer immunotherapies have changed the landscape of cancer treatment during the past few decades. Among them, immune checkpoint inhibitors, which target PD-1, PD-L1 and CTLA-4, are increasingly used for certain cancers; however, this increased use has resulted in increased reports of immune-related adverse events (irAEs). These irAEs are unique and are different to those of traditional cancer therapies, and typically have a delayed onset and prolonged duration. IrAEs can involve any organ or system. These effects are frequently low grade and are treatable and reversible; however, some adverse effects can be severe and lead to permanent disorders. Management is primarily based on corticosteroids and other immunomodulatory agents, which should be prescribed carefully to reduce the potential of short-term and long-term complications. Thoughtful management of irAEs is important in optimizing quality of life and long-term outcomes.

518 citations