scispace - formally typeset
Search or ask a question
Author

Ruei-Sung Lin

Other affiliations: Motorola
Bio: Ruei-Sung Lin is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Video tracking & Nonlinear dimensionality reduction. The author has an hindex of 11, co-authored 16 publications receiving 3841 citations. Previous affiliations of Ruei-Sung Lin include Motorola.

Papers
More filters
Journal ArticleDOI
TL;DR: A tracking method that incrementally learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target, and includes a method for correctly updating the sample mean and a forgetting factor to ensure less modeling power is expended fitting older observations.
Abstract: Visual tracking, in essence, deals with non-stationary image streams that change over time. While most existing algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the object's appearance or surrounding illumination. One reason for such failures is that many algorithms employ fixed appearance models of the target. Such models are trained using only appearance data available before tracking begins, which in practice limits the range of appearances that are modeled, and ignores the large volume of information (such as shape changes or specific lighting conditions) that becomes available during tracking. In this paper, we present a tracking method that incrementally learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target. The model update, based on incremental algorithms for principal component analysis, includes two important features: a method for correctly updating the sample mean, and a forgetting factor to ensure less modeling power is expended fitting older observations. Both of these features contribute measurably to improving overall tracking performance. Numerous experiments demonstrate the effectiveness of the proposed tracking algorithm in indoor and outdoor environments where the target objects undergo large changes in pose, scale, and illumination.

3,151 citations

Proceedings Article
01 Dec 2004
TL;DR: This paper presents an efficient and effective online algorithm that incrementally learns and adapts a low dimensional eigenspace representation to reflect appearance changes of the target, thereby facilitating the tracking task.
Abstract: Most existing tracking algorithms construct a representation of a target object prior to the tracking task starts, and utilize invariant features to handle appearance variation of the target caused by lighting, pose, and view angle change. In this paper, we present an efficient and effective online algorithm that incrementally learns and adapts a low dimensional eigenspace representation to reflect appearance changes of the target, thereby facilitating the tracking task. Furthermore, our incremental method correctly updates the sample mean and the eigenbasis, whereas existing incremental subspace update methods ignore the fact the sample mean varies over time. The tracking problem is formulated as a state inference problem within a Markov Chain Monte Carlo framework and a particle filter is incorporated for propagating sample distributions over time. Numerous experiments demonstrate the effectiveness of the proposed tracking algorithm in indoor and outdoor environments where the target objects undergo large pose and lighting changes.

334 citations

PatentDOI
15 Nov 2004
TL;DR: In this paper, a system and a method for adaptive probabilistic tracking of an object within a motion video is described. Butler et al. used a time-varying Eigenbasis and dynamic, observation and inference models to predict the most likely location of the object based upon past and present observations.
Abstract: A system and a method are disclosed for adaptive probabilistic tracking of an object within a motion video. The method utilizes a time-varying Eigenbasis and dynamic, observation and inference models. The Eigenbasis serves as a model of the target object. The dynamic model represents the motion of the object and defines possible locations of the target based upon previous locations. The observation model provides a measure of the distance of an observation of the object relative to the current Eigenbasis. The inference model predicts the most likely location of the object based upon past and present observations. The method is effective with or without training samples. A computer-based system provides a means for implementing the method. The effectiveness of the system and method are demonstrated through simulation.

162 citations

Proceedings Article
01 Dec 2004
TL;DR: This paper presents an adaptive discriminative generative model that generalizes the conventional Fisher Linear Discriminant algorithm and renders a proper probabilistic interpretation, thereby facilitating the tracking task in ever-changing environments.
Abstract: This paper presents an adaptive discriminative generative model that generalizes the conventional Fisher Linear Discriminant algorithm and renders a proper probabilistic interpretation. Within the context of object tracking, we aim to find a discriminative generative model that best separates the target from the background. We present a computationally efficient algorithm to constantly update this discriminative model as time progresses. While most tracking algorithms operate on the premise that the object appearance or ambient lighting condition does not significantly change as time progresses, our method adapts a discriminative generative model to reflect appearance variation of the target and background, thereby facilitating the tracking task in ever-changing environments. Numerous experiments show that our method is able to learn a discriminative generative model for tracking target objects undergoing large pose and lighting changes.

96 citations

Journal Article
TL;DR: In this paper, a dynamic Bayesian network is proposed to learn nonlinear mapping from time series data to their intrinsic coordinates on the underlying manifold to account for temporal correlation inherent in sequential data.
Abstract: There has been growing interest in developing nonlinear dimensionality reduction algorithms for vision applications. Although progress has been made in recent years, conventional nonlinear dimensionality reduction algorithms have been designed to deal with stationary, or independent and identically distributed data. In this paper, we present a novel method that learns nonlinear mapping from time series data to their intrinsic coordinates on the underlying manifold. Our work extends the recent advances in learning nonlinear manifolds within a global coordinate system to account for temporal correlation inherent in sequential data. We formulate the problem with a dynamic Bayesian network and propose an approximate algorithm to tackle the learning and inference problems. Numerous experiments demonstrate the proposed method is able to learn nonlinear manifolds from time series data, and as a result of exploiting the temporal correlation, achieve superior results.

41 citations


Cited by
More filters
Proceedings ArticleDOI
23 Jun 2013
TL;DR: Large scale experiments are carried out with various evaluation criteria to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking is one of the most important components in numerous applications of computer vision. While much progress has been made in recent years with efforts on sharing code and datasets, it is of great importance to develop a library and benchmark to gauge the state of the art. After briefly reviewing recent advances of online object tracking, we carry out large scale experiments with various evaluation criteria to understand how these algorithms perform. The test image sequences are annotated with different attributes for performance evaluation and analysis. By analyzing quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

3,828 citations

Journal ArticleDOI
TL;DR: A tracking method that incrementally learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target, and includes a method for correctly updating the sample mean and a forgetting factor to ensure less modeling power is expended fitting older observations.
Abstract: Visual tracking, in essence, deals with non-stationary image streams that change over time. While most existing algorithms are able to track objects well in controlled environments, they usually fail in the presence of significant variation of the object's appearance or surrounding illumination. One reason for such failures is that many algorithms employ fixed appearance models of the target. Such models are trained using only appearance data available before tracking begins, which in practice limits the range of appearances that are modeled, and ignores the large volume of information (such as shape changes or specific lighting conditions) that becomes available during tracking. In this paper, we present a tracking method that incrementally learns a low-dimensional subspace representation, efficiently adapting online to changes in the appearance of the target. The model update, based on incremental algorithms for principal component analysis, includes two important features: a method for correctly updating the sample mean, and a forgetting factor to ensure less modeling power is expended fitting older observations. Both of these features contribute measurably to improving overall tracking performance. Numerous experiments demonstrate the effectiveness of the proposed tracking algorithm in indoor and outdoor environments where the target objects undergo large changes in pose, scale, and illumination.

3,151 citations

Journal ArticleDOI
TL;DR: A novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection, and develops a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: P-expert estimates missed detections, and N-ex Expert estimates false alarms.
Abstract: This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

3,137 citations

Journal ArticleDOI
TL;DR: An extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria is carried out to identify effective approaches for robust tracking and provide potential future research directions in this field.
Abstract: Object tracking has been one of the most important and active research areas in the field of computer vision. A large number of tracking algorithms have been proposed in recent years with demonstrated success. However, the set of sequences used for evaluation is often not sufficient or is sometimes biased for certain types of algorithms. Many datasets do not have common ground-truth object positions or extents, and this makes comparisons among the reported quantitative results difficult. In addition, the initial conditions or parameters of the evaluated tracking algorithms are not the same, and thus, the quantitative results reported in literature are incomparable or sometimes contradictory. To address these issues, we carry out an extensive evaluation of the state-of-the-art online object-tracking algorithms with various evaluation criteria to understand how these methods perform within the same framework. In this work, we first construct a large dataset with ground-truth object positions and extents for tracking and introduce the sequence attributes for the performance analysis. Second, we integrate most of the publicly available trackers into one code library with uniform input and output formats to facilitate large-scale performance evaluation. Third, we extensively evaluate the performance of 31 algorithms on 100 sequences with different initialization settings. By analyzing the quantitative results, we identify effective approaches for robust tracking and provide potential future research directions in this field.

2,974 citations

Proceedings ArticleDOI
13 Jun 2010
TL;DR: A new type of correlation filter is presented, a Minimum Output Sum of Squared Error (MOSSE) filter, which produces stable correlation filters when initialized using a single frame, which enables the tracker to pause and resume where it left off when the object reappears.
Abstract: Although not commonly used, correlation filters can track complex objects through rotations, occlusions and other distractions at over 20 times the rate of current state-of-the-art techniques. The oldest and simplest correlation filters use simple templates and generally fail when applied to tracking. More modern approaches such as ASEF and UMACE perform better, but their training needs are poorly suited to tracking. Visual tracking requires robust filters to be trained from a single frame and dynamically adapted as the appearance of the target object changes. This paper presents a new type of correlation filter, a Minimum Output Sum of Squared Error (MOSSE) filter, which produces stable correlation filters when initialized using a single frame. A tracker based upon MOSSE filters is robust to variations in lighting, scale, pose, and nonrigid deformations while operating at 669 frames per second. Occlusion is detected based upon the peak-to-sidelobe ratio, which enables the tracker to pause and resume where it left off when the object reappears.

2,948 citations