scispace - formally typeset
Search or ask a question
Author

Ruey-Beei Wu

Other affiliations: MediaTek, Foxconn, Industrial Technology Research Institute  ...read more
Bio: Ruey-Beei Wu is an academic researcher from National Taiwan University. The author has contributed to research in topics: Microstrip & Band-pass filter. The author has an hindex of 39, co-authored 252 publications receiving 4871 citations. Previous affiliations of Ruey-Beei Wu include MediaTek & Foxconn.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a novel method for designing multiband bandpass filters has been proposed, which adds some extra coupled resonator sections in a single-circuit filter to increase the degrees of freedom in extracting coupling coefficients of a multiband filter.
Abstract: A novel method for designing multiband bandpass filters has been proposed in this paper. Coupling structures with both Chebyshev and quasi-elliptic frequency responses are presented to achieve dual- and triple-band characteristics without a significant increase in circuit size. The design concept is to add some extra coupled resonator sections in a single-circuit filter to increase the degrees of freedom in extracting coupling coefficients of a multiband filter and, therefore, the filter is capable of realizing the specifications of coupling coefficients at all passbands. To verify the presented concept, four experimental examples of filters with a dual-band Chebyshev, triple-band Chebyshev, dual-band quasi-elliptic, and triple-band quasi-elliptic response have been designed and fabricated with microstrip technology. The measured results are in good agreement with the full-wave simulation results

298 citations

Journal ArticleDOI
TL;DR: In this article, the variable frequency response of the stepped-impedance resonator is exploited to reduce the size of a microstrip diplexer by introducing a few common resonator sections in the circuit.
Abstract: High isolation and compact size microstrip diplexers designed with common resonator sections have been proposed. By exploiting the variable frequency response of the stepped-impedance resonator, resonators can be shared by the two filter channels of the desired diplexer if their fundamental and the first spurious resonant frequency are properly assigned. Size reduction are, therefore, achieved by introducing a few common resonator sections in the circuit. This concept has been verified by the experimental results of two diplexer circuits. One of the diplexers is composed of two three-pole parallel-coupled bandpass filters and the other is composed of two four-pole cross-coupled bandpass filters, which are formed by only five and six resonators, respectively. Both of them occupy extremely small areas while still keeping good isolations. Good agreements are also achieved between measurement and simulation.

246 citations

Journal ArticleDOI
TL;DR: In this paper, a bandpass filter design method for suppressing spurious responses in the stopband by choosing the constitutive resonators with the same fundamental frequency, but staggered higher order resonant frequencies is proposed.
Abstract: This paper proposes a bandpass filter design method for suppressing spurious responses in the stopband by choosing the constitutive resonators with the same fundamental frequency, but staggered higher order resonant frequencies. The design concept is demonstrated by a four-pole parallel-coupled Chebyshev bandpass filter and a compact four-pole cross-coupled elliptic-type bandpass filter. Each filter is composed of four different stepped-impedance resonators (SIRs) for which a general design guideline has been provided in order to have the same fundamental frequency and different spurious frequencies by proper adjusting the impedance and length ratios of the SIR. Being based on knowledge of the coupling coefficients and following the traditional design procedure, the resultant filter structures are simple and easy to synthesize. The measured results are in good agreement with the simulated predictions, showing that better than -30-dB rejection levels in the stopband up to 5.4f/sub 0/ and 8.2f/sub 0/ are achieved by the Chebyshev and quasi-elliptic filters, respectively.

189 citations

Journal ArticleDOI
TL;DR: In this article, a 60GHz four-element phased-array transmit/receive (TX/RX) system-in-package antenna modules with phase-compensated techniques in 65-nm CMOS technology are presented.
Abstract: AThe 60-GHz four-element phased-array transmit/receive (TX/RX) system-in-package antenna modules with phase-compensated techniques in 65-nm CMOS technology are presented. The design is based on the all-RF architecture with 4-bit RF switched LC phase shifters, phase compensated variable gain amplifier (VGA), 4:1 Wilkinson power combining/dividing network, variable-gain low-noise amplifier, power amplifier, 6-bit unary digital-to-analog converter, bias circuit, electrostatic discharge protection, and digital control interface (DCI). The 2 × 2 TX/RX phased arrays have been packaged with four antennas in low-temperature co-fired ceramic modules through flip-chip bonding and underfill process, and phased-array beam steering have been demonstrated. The entire beam-steering functions are digitally controllable, and individual registers are integrated at each front-end to enable beam steering through the DCI. The four-element TX array results in an output of 5 dBm per channel. The four-element RX array results in an average gain of 25 dB per channel. The four-element array consumes 400 mW in TX and 180 mW in RX and occupies an area of 3.74 mm2 in the TX integrated circuit (IC) and 4.18 mm2 in the RX IC. The beam-steering measurement results show acceptable agreement of the synthesized and measured array pattern.

125 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed miniaturized bandpass filters with double-folded substrate integrated waveguide (SIW) resonators using multilayer low-temperature co-fired ceramic (LTCC) technology.
Abstract: This paper proposes miniaturized bandpass filters with double-folded substrate integrated waveguide (SIW) resonators using multilayer low-temperature co-fired ceramic (LTCC) technology. Formed by inserting a metal plate with two orthogonal slots into the cavity, the double-folded SIW resonator is used for the circuit size reduction with its footprint about a quarter of the conventional TE101 mode. With LTCC technology, there is more flexibility to organize the cavities of filters because of the 3-D arrangement. The vertically stacked cavities are coupled by ldquoLrdquo- or ldquoUrdquo-shaped slots, and if arranged horizontally, by an inductive window on the common sidewall or a suspended stripline between the cavities. Through experimental measurements and simulations at both the Ka- V -bands, it has been demonstrated that the proposed filter has compact sizes and good frequency responses. The area of the fully stacked Chebyshev filter has 88% size reduction in comparison with a three-pole planar waveguide filter, while the vertically stacked quasi-elliptic filter has 74% size reduction in comparison with a four-pole planar waveguide filter.

124 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.
Abstract: Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

2,380 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components, as well as their application in the development of circuits and components operating in the microwave and millimetre wave region.
Abstract: Substrate-integrated waveguide (SIW) technology represents an emerging and very promising candidate for the development of circuits and components operating in the microwave and millimetre-wave region. SIW structures are generally fabricated by using two rows of conducting cylinders or slots embedded in a dielectric substrate that connects two parallel metal plates, and permit the implementation of classical rectangular waveguide components in planar form, along with printed circuitry, active devices and antennas. This study aims to provide an overview of the recent advances in the modelling, design and technological implementation of SIW structures and components.

1,129 citations

Book
12 Jul 2000
TL;DR: Numerical Techniques in Electromagnetics is designed to show the reader how to pose, numerically analyze, and solve electromagnetic (EM) problems using a variety of available numerical methods.
Abstract: Numerical Techniques in Electromagnetics is designed to show the reader how to pose, numerically analyze, and solve electromagnetic (EM) problems. It gives them the ability to expand their problem-solving skills using a variety of available numerical methods. Topics covered include fundamental concepts in EM; numerical methods; finite difference methods; variational methods, including moment methods and finite element methods; transmission-line matrix or modeling (TLM); and Monte Carlo methods. The simplicity of presentation of topics throughout the book makes this an ideal text for teaching or self-study by senior undergraduates, graduate students, and practicing engineers.

662 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters and defined a power consumption model and used it to evaluate the energy efficiency of both structures.
Abstract: Hybrid analog/digital multiple-input multiple-output architectures were recently proposed as an alternative for fully digital-precoding in millimeter wave wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open-loop compressive channel estimation technique that is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimate, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the tradeoffs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.

632 citations