scispace - formally typeset
Search or ask a question
Author

Rui-Chao Chai

Bio: Rui-Chao Chai is an academic researcher from Capital Medical University. The author has contributed to research in topics: Glioma & Astrocyte. The author has an hindex of 17, co-authored 41 publications receiving 715 citations. Previous affiliations of Rui-Chao Chai include Peking University & National Health and Family Planning Commission.

Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed the Chinese Glioma Genome Atlas (CGGA), a userfriendly data portal for the storage and interactive exploration of cross-omics data, including nearly 2000 primary and recurrent glioma samples from Chinese cohort.

315 citations

Posted ContentDOI
21 Jan 2020-bioRxiv
TL;DR: The Chinese Glioma Genome Atlas (CGGA) is developed, a user-friendly data portal for storage and interactive exploration of multi-dimensional functional genomic data that includes nearly 2,000 primary and recurrent glioma samples from Chinese cohorts and develops an analysis tool to allow users to browse mutational, mRNA/microRNA expression, and DNA methylation profiles and perform survival and correlation analyses of specificglioma subtypes.
Abstract: Gliomas are the most common and malignant intracranial tumours in adults. Recent studies have shown that functional genomics greatly aids in the understanding of the pathophysiology and therapy of glioma. However, comprehensive genomic data and analysis platforms are relatively limited. In this study, we developed the Chinese Glioma Genome Atlas (CGGA, http://www.cgga.org.cn), a user-friendly data portal for storage and interactive exploration of multi-dimensional functional genomic data that includes nearly 2,000 primary and recurrent glioma samples from Chinese cohorts. CGGA currently provides access to whole-exome sequencing (286 samples), messenger RNA sequencing (1,018 samples) and microarray (301 samples), DNA methylation microarray (159 samples), and microRNA microarray (198 samples) data, as well as detailed clinical data (e.g., WHO grade, histological type, critical molecular genetic information, age, sex, chemoradiotherapy status and survival data). In addition, we developed an analysis tool to allow users to browse mutational, mRNA/microRNA expression, and DNA methylation profiles and perform survival and correlation analyses of specific glioma subtypes. CGGA greatly reduces the barriers between complex functional genomic data and glioma researchers who seek rapid, intuitive, and high-quality access to data resources and enables researchers to use these immeasurable data sources for biological research and clinical application. Importantly, the free provision of data will allow researchers to quickly generate and provide data to the research community.

256 citations

Journal ArticleDOI
27 Feb 2019
TL;DR: It is demonstrated that most of the thirteen main m6A RNA methylation regulators are differentially expressed among gliomas stratified by different clinicopathological features in 904gliomas, and derived a risk signature that is not only an independent prognostic marker but can also predict the clinicopathic features of glioma malignancy.
Abstract: N6-methyladenosine (m6A) RNA methylation, associated with cancer initiation and progression, is dynamically regulated by the m6A RNA methylation regulators ("writers", "erasers" and "readers"). Here, we demonstrate that most of the thirteen main m6A RNA methylation regulators are differentially expressed among gliomas stratified by different clinicopathological features in 904 gliomas. We identified two subgroups of gliomas (RM1/2) by applying consensus clustering to m6A RNA methylation regulators. Compared with the RM1 subgroup, the RM2 subgroup correlates with a poorer prognosis, higher WHO grade, and lower frequency of IDH mutation. Moreover, the hallmarks of epithelial-mesenchymal transition and TNFα signaling via NF-κB are also significantly enriched in the RM2 subgroup. This finding indicates that m6A RNA methylation regulators are closely associated with glioma malignancy. Based on this finding, we derived a risk signature, using seven m6A RNA methylation regulators, that is not only an independent prognostic marker but can also predict the clinicopathological features of gliomas. Moreover, m6A regulators are associated with the mesenchymal subtype and TMZ sensitivity in GBM. In conclusion, m6A RNA methylation regulators are crucial participants in the malignant progression of gliomas and are potentially useful for prognostic stratification and treatment strategy development.

149 citations

Journal ArticleDOI
01 Dec 2013-Glia
TL;DR: It is demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c‐Jun/AP‐1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.
Abstract: Astrocyte activation is a hallmark of central nervous system injuries resulting in glial scar formation (astrogliosis). The activation of astrocytes involves metabolic and morphological changes with complex underlying mechanisms, which should be defined to provide targets for astrogliosis intervention. Astrogliosis is usually accompanied by an upregulation of glial fibrillary acidic protein (GFAP). Using an in vitro scratch injury model, we scratched primary cultures of cerebral cortical astrocytes and observed an influx of calcium in the form of waves spreading away from the wound through gap junctions. Using the calcium blocker BAPTA-AM and the JNK inhibitor SP600125, we demonstrated that the calcium wave triggered the activation of JNK, which then phosphorylated the transcription factor c-Jun to facilitate the binding of AP-1 to the GFAP gene promoter to switch on GFAP upregulation. Blocking calcium mobilization with BAPTA-AM in an in vivo stab wound model reduced GFAP expression and glial scar formation, showing that the calcium signal, and the subsequent regulation of downstream signaling molecules, plays an essential role in brain injury response. Our findings demonstrated that traumatic scratch injury to astrocytes triggered a calcium influx from the extracellular compartment and activated the JNK/c-Jun/AP-1 pathway to switch on GFAP expression, identifying a previously unreported signaling cascade that is important in astrogliosis and the physiological response following brain injury.

111 citations

Journal ArticleDOI
TL;DR: In this paper, the role and mechanism of the RNA N6,2′-O-dimethyladenosine (m6A) reader, YTH N6-methyladenosines RNA binding protein 2 (YTHDF2), in regulating the malignant progression of gliomas was investigated.
Abstract: The prognosis for diffuse gliomas is very poor and the mechanism underlying their malignant progression remains unclear. Here, we aimed to elucidate the role and mechanism of the RNA N6,2′-O-dimethyladenosine (m6A) reader, YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), in regulating the malignant progression of gliomas. YTHDF2 mRNA levels and functions were assessed using several independent datasets. Western blotting, quantitative polymerase chain reaction, and immunohistochemistry were used to evaluate the expression levels of YTHDF2 and other molecules in human and mouse tumor tissues and cells. Knockdown and overexpression were used to evaluate the effects of YTHDF2, methyltransferase-like 3 (METTL3), and UBX domain protein 1 (UBXN1) on glioma malignancy in cell and orthotopic xenograft models. RNA immunoprecipitation (RIP), methylated RIP, and RNA stability experiments were performed to study the mechanisms underlying the oncogenic role of YTHDF2. YTHDF2 expression was positively associated with a higher malignant grade and molecular subtype of glioma and poorer prognosis. YTHDF2 promoted the malignant progression of gliomas in both in vitro and in vivo models. Mechanistically, YTHDF2 accelerated UBXN1 mRNA degradation via METTL3-mediated m6A, which, in turn, promoted NF-κB activation. We further revealed that UBXN1 overexpression attenuated the oncogenic effect of YTHDF2 overexpression and was associated with better survival in patients with elevated YTHDF2 expression. Our findings confirmed that YTHDF2 promotes the malignant progression of gliomas and revealed important insight into the upstream regulatory mechanism of NF-κB activation via UBXN1 with a primary focus on m6A modification.

58 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

Journal ArticleDOI
TL;DR: Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed.
Abstract: According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.

609 citations

Journal ArticleDOI
TL;DR: It is argued that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer’s disease as well as other neurodegenerative diseases.
Abstract: The neurone-centred view of the past disregarded or downplayed the role of astroglia as a primary component in the pathogenesis of neurological diseases. As this concept is changing, so is also the perceived role of astrocytes in the healthy and diseased brain and spinal cord. We have started to unravel the different signalling mechanisms that trigger specific molecular, morphological and functional changes in reactive astrocytes that are critical for repairing tissue and maintaining function in CNS pathologies, such as neurotrauma, stroke, or neurodegenerative diseases. An increasing body of evidence shows that the effects of astrogliosis on the neural tissue and its functions are not uniform or stereotypic, but vary in a context-specific manner from astrogliosis being an adaptive beneficial response under some circumstances to a maladaptive and deleterious process in another context. There is a growing support for the concept of astrocytopathies in which the disruption of normal astrocyte functions, astrodegeneration or dysfunctional/maladaptive astrogliosis are the primary cause or the main factor in neurological dysfunction and disease. This review describes the multiple roles of astrocytes in the healthy CNS, discusses the diversity of astroglial responses in neurological disorders and argues that targeting astrocytes may represent an effective therapeutic strategy for Alexander disease, neurotrauma, stroke, epilepsy and Alzheimer's disease as well as other neurodegenerative diseases.

557 citations