scispace - formally typeset
Search or ask a question
Author

Rui Ma

Bio: Rui Ma is an academic researcher from Sun Yat-sen University. The author has contributed to research in topics: Electronics & Wearable computer. The author has an hindex of 3, co-authored 4 publications receiving 42 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the most recent advances in Ti3C2Tx-based supercapacitor electrodes are comprehensively reviewed, with an emphasis on the vital role that 2D MXene plays in the remarkable electrochemical performance and related mechanisms.
Abstract: To promote the development of supercapacitors and their applications in modern electronics, it is crucial to explore novel supercapacitor electrode materials. As a representative member of the rising 2D MXenes, Ti3C2Tx MXene has shown tremendous potential for supercapacitor electrodes owing to its unique physicochemical properties. Here, the most recent advances in Ti3C2Tx-based supercapacitor electrodes are comprehensively reviewed, with an emphasis on the vital role that Ti3C2Tx MXene plays in the remarkable electrochemical performance and related mechanisms. The fabrication methods, electrode structures, working mechanisms, electrochemical performance and related influencing factors, mechanical properties and applications, as well as the associated advantages/disadvantages of Ti3C2Tx-based supercapacitor electrodes are thoroughly and exhaustively summarized and discussed. Based on the recent progress, the existing challenges along with the corresponding possible solutions, and the future prospects of Ti3C2Tx-based materials for supercapacitors are also outlined and discussed.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a tactile e-skin that can simultaneously detect and distinguish between temperature and pressure in real time is developed, based on a single-electrode-mode triboelectric nanogenerator (TENG) with a specially prepared thermoresistive electrode combining BiTO and rGO.

70 citations

Journal ArticleDOI
TL;DR: In this paper, a review of flexible temperature sensors based on carbon nanomaterials is presented, where the working mechanisms, device structures, material compositions, fabrication technologies, temperature sensing properties, crucial roles of carbon materials, specific advantages and existing limitations are comprehensively elaborated and discussed, and conclusions are made and challenges as well as future perspectives are systematically outlined and discussed.
Abstract: Flexible temperature sensors can be attached to the surface of human skin or curved surfaces directly for continuous and stable data measurements, and have attracted extensive attention in myriad areas. Carbon nanomaterials possess great potential for temperature sensing, and flexible temperature sensors based on carbon nanomaterials have demonstrated unique advantages such as high sensitivity, fast response, good mechanical adaptability, low-cost fabrication processes, high cycling stability and reliability. In this review, the working mechanisms, device structures, material compositions, fabrication technologies, temperature sensing properties, the crucial roles of carbon nanomaterials, specific advantages and existing limitations of different types of flexible temperature sensors based on carbon nanomaterials are comprehensively elaborated and discussed. Based on recent advances, conclusions are made and challenges as well as future perspectives are systematically outlined and discussed.

31 citations

Journal ArticleDOI
TL;DR: In this article, a novel eco-friendly in-situ gap-generation method by vaporizing distilled water is developed to fabricate a no-spacer triboelectric nanogenerator (NSTENG), which reveals more uniform stress/strain distributions and undergoes larger displacement compared with the traditional TENG with spacer under the same pressure.

22 citations

Journal ArticleDOI
TL;DR: In this article , the influence of the reference electrode on the performance of SETENGs is systematically investigated and the targeted optimization strategies are thoroughly revealed, which provides fundamental guidance for the development and fabrication of new electronic devices.
Abstract: Owing to their unique advantages, single‐electrode triboelectric nanogenerators (SETENGs) have gained wide attention and have been applied in myriad areas, especially in the burgeoning flexible/wearable electronics. However, there is still a lack of a clear understanding of SETENGs. For example, previous simulation models generally put the reference electrode perpendicularly below the working part, but in practice, the reference electrode is designed in various scenarios and noticeable differences in outputs often occur when the reference electrode changes. With SETENGs developing towards wearability and portability, its reference electrode is often required to be constructed inside the device. Consequently, to achieve optimum performance, it is essential to understand the reference electrode's influence on the outputs. Here, the influence of the reference electrode on the performance of SETENGs is systematically investigated and the targeted optimization strategies are thoroughly revealed. First, theoretical simulations are conducted to investigate the reference electrode's effect on the performance of SETENGs with different structures and in various working modes. Secondly, the theoretical results are certified through corresponding experiments. Based on the results, the targeted optimization strategies for SETENGs are comprehensively demonstrated. This work provides fundamental guidance for the development of TENGs and the design and fabrication of new electronic devices.

2 citations


Cited by
More filters
01 Apr 2016
TL;DR: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate as discussed by the authors.
Abstract: Heterocyclic pyrrole molecules are in situ aligned and polymerized in the -absence of an oxidant between layers of the 2D Ti3C2Tx (MXene), resulting in high volumetric and gravimetric capacitances with capacitance retention of 92% after 25,000 cycles at a 100 mV s(-1) scan rate.

692 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors exploited hierarchical nanohybrids via ionic hetero-assembly of 3D FeNi-LDH arrays on 2D Ti3C2Tx-based MXene nanosheets through mutual coupling synergy.

80 citations

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors exploited hierarchical nanohybrids via ionic hetero-assembly of 3D FeNi-LDH arrays on 2D Ti3C2Tx-based MXene nanosheets through mutual coupling synergy.

80 citations

Journal ArticleDOI
01 Jan 2021
TL;DR: Sensors are vital components of Industry 4.0, allowing several transitions such as changes in positions, length, height, external and dislocations in industrial production facilities to be detected, measured, analysed, and processed.
Abstract: Sensors play a crucial role in factory automation in making the system intellectual. Different types of sensors are available as per the suitability and applications; some of them are produced in mass and available in the market at affordable costs. The standard sensor types available are position sensors, pressure sensors, flow sensors, temperature sensors, and force sensors. They are used in many sectors, such as motorsport, medical, industry, aerospace, agriculture, and daily life. The objective of Industry 4.0 is to increase efficiency through automation. Sensors are vital components of Industry 4.0, allowing several transitions such as changes in positions, length, height, external and dislocations in industrial production facilities to be detected, measured, analysed, and processed. Smart factories will also enhance sustainability by tracking real-time output, and automated control systems will minimise potential factory maintenance costs. It can also be seen that digitalisation can improve production mobility, which gives advanced manufacturing firms a competitive advantage. This paper discusses sensors and their various types, along with significant capabilities for manufacturing. The step-by-step working Blocks and Quality Services of Sensors during implementation in Industry 4.0 are elaborated diagrammatically. Finally, we identified thirteen significant applications of sensors for Industry 4.0. Industry 4.0 provides an excellent opportunity for the development of the sensor market across the globe. In Industry 4.0, sensors will enjoy higher acceptance rates and benefit from a fully enabled connecting and data exchange and logistics integration. In the coming years, sensor installations may grow in process management, automated production lines, and digital supply chains.

78 citations