scispace - formally typeset
Search or ask a question
Author

Rui Miao

Bio: Rui Miao is an academic researcher from Alibaba Group. The author has contributed to research in topics: Network packet & Forwarding plane. The author has an hindex of 15, co-authored 22 publications receiving 2508 citations. Previous affiliations of Rui Miao include Tsinghua University & University of Southern California.

Papers
More filters
Proceedings ArticleDOI
27 Aug 2013
TL;DR: SIMPLE, a SDN-based policy enforcement layer for efficient middlebox-specific "traffic steering", is presented, a significant step toward addressing industry concerns surrounding the ability of SDN to integrate with existing infrastructure and support L4-L7 capabilities.
Abstract: Networks today rely on middleboxes to provide critical performance, security, and policy compliance capabilities. Achieving these benefits and ensuring that the traffic is directed through the desired sequence of middleboxes requires significant manual effort and operator expertise. In this respect, Software-Defined Networking (SDN) offers a promising alternative. Middleboxes, however, introduce new aspects (e.g., policy composition, resource management, packet modifications) that fall outside the purvey of traditional L2/L3 functions that SDN supports (e.g., access control or routing). This paper presents SIMPLE, a SDN-based policy enforcement layer for efficient middlebox-specific "traffic steering''. In designing SIMPLE, we take an explicit stance to work within the constraints of legacy middleboxes and existing SDN interfaces. To this end, we address algorithmic and system design challenges to demonstrate the feasibility of using SDN to simplify middlebox traffic steering. In doing so, we also take a significant step toward addressing industry concerns surrounding the ability of SDN to integrate with existing infrastructure and support L4-L7 capabilities.

780 citations

Proceedings Article
02 Apr 2013
TL;DR: This work proposes a software defined traffic measurement architecture OpenSketch, which separates the measurement data plane from the control plane and provides a measurement library that automatically configures the pipeline and allocates resources for different measurement tasks.
Abstract: Most network management tasks in software-defined networks (SDN) involve two stages: measurement and control. While many efforts have been focused on network control APIs for SDN, little attention goes into measurement. The key challenge of designing a new measurement API is to strike a careful balance between generality (supporting a wide variety of measurement tasks) and efficiency (enabling high link speed and low cost). We propose a software defined traffic measurement architecture OpenSketch, which separates the measurement data plane from the control plane. In the data plane, OpenSketch provides a simple three-stage pipeline (hashing, filtering, and counting), which can be implemented with commodity switch components and support many measurement tasks. In the control plane, OpenSketch provides a measurement library that automatically configures the pipeline and allocates resources for different measurement tasks. Our evaluations of real-world packet traces, our prototype on NetFPGA, and the implementation of five measurement tasks on top of OpenSketch, demonstrate that OpenSketch is general, efficient and easily programmable.

587 citations

Proceedings ArticleDOI
07 Aug 2018
TL;DR: The Elastic sketch is proposed, which is adaptive to currently traffic characteristics, generic to measurement tasks and platforms, and implemented on six platforms to process typical measurement tasks.
Abstract: When network is undergoing problems such as congestion, scan attack, DDoS attack, etc, measurements are much more important than usual In this case, traffic characteristics including available bandwidth, packet rate, and flow size distribution vary drastically, significantly degrading the performance of measurements To address this issue, we propose the Elastic sketch It is adaptive to currently traffic characteristics Besides, it is generic to measurement tasks and platforms We implement the Elastic sketch on six platforms: P4, FPGA, GPU, CPU, multi-core CPU, and OVS, to process six typical measurement tasks Experimental results and theoretical analysis show that the Elastic sketch can adapt well to traffic characteristics Compared to the state-of-the-art, the Elastic sketch achieves 446 ∼ 452 times faster speed and 20 ∼ 2737 smaller error rate

366 citations

Proceedings ArticleDOI
07 Aug 2017
TL;DR: The system, called SilkRoad, is defined in a 400 line P4 program and when compiled to a state-of-the-art switching ASIC, it can load-balance ten million connections simultaneously at line rate.
Abstract: In this paper, we show that up to hundreds of software load balancer (SLB) servers can be replaced by a single modern switching ASIC, potentially reducing the cost of load balancing by over two orders of magnitude. Today, large data centers typically employ hundreds or thousands of servers to load-balance incoming traffic over application servers. These software load balancers (SLBs) map packets destined to a service (with a virtual IP address, or VIP), to a pool of servers tasked with providing the service (with multiple direct IP addresses, or DIPs). An SLB is stateful, it must always map a connection to the same server, even if the pool of servers changes and/or if the load is spread differently across the pool. This property is called per-connection consistency or PCC. The challenge is that the load balancer must keep track of millions of connections simultaneously.Until recently, it was not possible to implement a load balancer with PCC in a merchant switching ASIC, because high-performance switching ASICs typically can not maintain per-connection states with PCC. Newer switching ASICs provide resources and primitives to enable PCC at a large scale. In this paper, we explore how to use switching ASICs to build much faster load balancers than have been built before. Our system, called SilkRoad, is defined in a 400 line P4 program and when compiled to a state-of-the-art switching ASIC, we show it can load-balance ten million connections simultaneously at line rate.

362 citations

Proceedings ArticleDOI
19 Aug 2019
TL;DR: HPCC (High Precision Congestion Control), a new high-speed CC mechanism which achieves the three goals simultaneously, is presented, which leverages in-network telemetry (INT) to obtain precise link load information and controls traffic precisely.
Abstract: Congestion control (CC) is the key to achieving ultra-low latency, high bandwidth and network stability in high-speed networks. From years of experience operating large-scale and high-speed RDMA networks, we find the existing high-speed CC schemes have inherent limitations for reaching these goals. In this paper, we present HPCC (High Precision Congestion Control), a new high-speed CC mechanism which achieves the three goals simultaneously. HPCC leverages in-network telemetry (INT) to obtain precise link load information and controls traffic precisely. By addressing challenges such as delayed INT information during congestion and overreac-tion to INT information, HPCC can quickly converge to utilize free bandwidth while avoiding congestion, and can maintain near-zero in-network queues for ultra-low latency. HPCC is also fair and easy to deploy in hardware. We implement HPCC with commodity programmable NICs and switches. In our evaluation, compared to DCQCN and TIMELY, HPCC shortens flow completion times by up to 95%, causing little congestion even under large-scale incasts.

290 citations


Cited by
More filters
Journal ArticleDOI
01 Jan 2015
TL;DR: This paper presents an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications, and presents the key building blocks of an SDN infrastructure using a bottom-up, layered approach.
Abstract: The Internet has led to the creation of a digital society, where (almost) everything is connected and is accessible from anywhere. However, despite their widespread adoption, traditional IP networks are complex and very hard to manage. It is both difficult to configure the network according to predefined policies, and to reconfigure it to respond to faults, load, and changes. To make matters even more difficult, current networks are also vertically integrated: the control and data planes are bundled together. Software-defined networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns, introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper, we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound application programming interfaces (APIs), network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms—with a focus on aspects such as resiliency, scalability, performance, security, and dependability—as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

3,589 citations

Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations

Posted Content
TL;DR: Software-Defined Networking (SDN) as discussed by the authors is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network.
Abstract: Software-Defined Networking (SDN) is an emerging paradigm that promises to change this state of affairs, by breaking vertical integration, separating the network's control logic from the underlying routers and switches, promoting (logical) centralization of network control, and introducing the ability to program the network. The separation of concerns introduced between the definition of network policies, their implementation in switching hardware, and the forwarding of traffic, is key to the desired flexibility: by breaking the network control problem into tractable pieces, SDN makes it easier to create and introduce new abstractions in networking, simplifying network management and facilitating network evolution. In this paper we present a comprehensive survey on SDN. We start by introducing the motivation for SDN, explain its main concepts and how it differs from traditional networking, its roots, and the standardization activities regarding this novel paradigm. Next, we present the key building blocks of an SDN infrastructure using a bottom-up, layered approach. We provide an in-depth analysis of the hardware infrastructure, southbound and northbound APIs, network virtualization layers, network operating systems (SDN controllers), network programming languages, and network applications. We also look at cross-layer problems such as debugging and troubleshooting. In an effort to anticipate the future evolution of this new paradigm, we discuss the main ongoing research efforts and challenges of SDN. In particular, we address the design of switches and control platforms -- with a focus on aspects such as resiliency, scalability, performance, security and dependability -- as well as new opportunities for carrier transport networks and cloud providers. Last but not least, we analyze the position of SDN as a key enabler of a software-defined environment.

1,968 citations

Journal ArticleDOI
TL;DR: A generally accepted definition for SDN is presented, including decoupling the control plane from the data plane and providing programmability for network application development, and its three-layer architecture is dwelled on, including an infrastructure layer, a control layer, and an application layer.
Abstract: Emerging mega-trends (e.g., mobile, social, cloud, and big data) in information and communication technologies (ICT) are commanding new challenges to future Internet, for which ubiquitous accessibility, high bandwidth, and dynamic management are crucial. However, traditional approaches based on manual configuration of proprietary devices are cumbersome and error-prone, and they cannot fully utilize the capability of physical network infrastructure. Recently, software-defined networking (SDN) has been touted as one of the most promising solutions for future Internet. SDN is characterized by its two distinguished features, including decoupling the control plane from the data plane and providing programmability for network application development. As a result, SDN is positioned to provide more efficient configuration, better performance, and higher flexibility to accommodate innovative network designs. This paper surveys latest developments in this active research area of SDN. We first present a generally accepted definition for SDN with the aforementioned two characteristic features and potential benefits of SDN. We then dwell on its three-layer architecture, including an infrastructure layer, a control layer, and an application layer, and substantiate each layer with existing research efforts and its related research areas. We follow that with an overview of the de facto SDN implementation (i.e., OpenFlow). Finally, we conclude this survey paper with some suggested open research challenges.

894 citations