scispace - formally typeset
Search or ask a question
Author

Rui Wang

Bio: Rui Wang is an academic researcher from Northwest A&F University. The author has contributed to research in topics: Genome browser & Genome. The author has an hindex of 1, co-authored 3 publications receiving 2 citations.
Topics: Genome browser, Genome, Epigenome, Indel, Epigenomics

Papers
More filters
Journal ArticleDOI
TL;DR: The Ruminant Genome Database (RGD) v2.0 as mentioned in this paper provides visualization and analysis tools for ruminant comparative genomics and functional annotations, including the LiftOver tool, which allows coordinate conversion between different RGD assemblies.
Abstract: Ruminant Genome Database (RGD; http://animal.nwsuaf.edu.cn/RGD) provides visualization and analysis tools for ruminant comparative genomics and functional annotations. As more high-quality ruminant genome assemblies have become available, we have redesigned the user interface, integrated and expanded multi-omics data, and developed novel features to improve the database. The new version, RGD v2.0, houses 78 ruminant genomes; 110-species synteny alignments for major livestock (including cattle, sheep, goat) and wild ungulates; 21 012 orthologous gene clusters with Gene Ontology and pathway annotation; ∼8 600 000 conserved elements; and ∼1 000 000 cis-regulatory elements by utilizing 1053 epigenomic data sets. The transcriptome data in RGD v2.0 has nearly doubled, currently with 1936 RNA-seq data sets, and 155 174 phenotypic data sets have been newly added. New and updated features include: (i) The UCSC Genome Browser, BLAT, BLAST and Table Browser tools were updated for six available ruminant livestock species. (ii) The LiftOver tool was newly introduced into our browser to allow coordinate conversion between different ruminant assemblies. And (iii) tissue specificity index, tau, was calculated to facilitate batch screening of specifically expressed genes. The enhanced genome annotations and improved functionality in RGD v2.0 will be useful for study of genome evolution, environmental adaption, livestock breeding and biomedicine.

16 citations

Journal ArticleDOI
Weiwei Fu1, Rui Wang1, Jiantao Yu1, Dexiang Hu1, Yu-Dong Cai1, Junjie Shao1, Yu Jiang1 
TL;DR: Li et al. as discussed by the authors used the genomes of 208 modern domestic goats, 24 bezoars, 46 wild ibexes, and 82 ancient goats to present a comprehensive goat genome variation database (GGVD).

9 citations

Journal ArticleDOI
01 Jan 2020-Database
TL;DR: Wheat Genome Variation Database is established, an integrated web-database including genomic variations from whole-genome resequencing and exome-capture data for bread wheat and its progenitors, as well as selective signatures during the process of wheat domestication and improvement.
Abstract: Bread wheat is one of the most important crops worldwide. With the release of the complete wheat reference genome and the development of next-generation sequencing technology, a mass of genomic data from bread wheat and its progenitors has been yield and has provided genomic resources for wheat genetics research. To conveniently and effectively access and use these data, we established Wheat Genome Variation Database, an integrated web-database including genomic variations from whole-genome resequencing and exome-capture data for bread wheat and its progenitors, as well as selective signatures during the process of wheat domestication and improvement. In this version, WGVD contains 7 346 814 single nucleotide polymorphisms (SNPs) and 1 044 400 indels focusing on genic regions and upstream or downstream regions. We provide allele frequency distribution patterns of these variations for 5 ploidy wheat groups or 17 worldwide bread wheat groups, the annotation of the variant types and the genotypes of all individuals for 2 versions of bread wheat reference genome (IWGSC RefSeq v1.0 and IWGSC RefSeq v2.0). Selective footprints for Aegilops tauschii, wild emmer, domesticated emmer, bread wheat landrace and bread wheat variety are evaluated with two statistical tests (FST and Pi) based on SNPs from whole-genome resequencing data. In addition, we provide the Genome Browser to visualize the genomic variations, the selective footprints, the genotype patterns and the read coverage depth, and the alignment tool Blast to search the homologous regions between sequences. All of these features of WGVD will promote wheat functional studies and wheat breeding. Database url http://animal.nwsuaf.edu.cn/code/index.php/Wheat.

7 citations

Proceedings ArticleDOI
10 Jul 2022
TL;DR: HCG, an optimized code generator for the Simulink model with SIMD instruction synthesis, which will select the optimal implementations for intensive computing actors based on adaptively pre-calculation of the input scales, and synthesize the appropriate SIMD instructions for batch computing actorsbased on the iterative dataflow graph mapping is proposed.
Abstract: Simulink is widely used for the model-driven design of embedded systems. It is able to generate optimized embedded control software code through expression folding, variable reuse, etc. However, for some commonly used computing-sensitive models, such as the models for signal processing applications, the efficiency of the generated code is still limited. In this paper, we propose HCG, an optimized code generator for the Simulink model with SIMD instruction synthesis. It will select the optimal implementations for intensive computing actors based on adaptively pre-calculation of the input scales, and synthesize the appropriate SIMD instructions for batch computing actors based on the iterative dataflow graph mapping. We implemented and evaluated its performance on benchmark Simulink models. Compared to the built-in Simulink Coder and the most recent DFSynth, the code generated by HCG achieves an improvement of 38.9%-92.9% and 41.2%-76.8% in terms of execution time across different architectures and compilers, respectively.

2 citations

Journal ArticleDOI
TL;DR: Galbase as mentioned in this paper is an easily accessible repository that integrates public chicken multi-omics data from 928 re-sequenced genomes, 429 transcriptomes, 379 epigenomes, 15,275 QTL entries, and 7,526 associations.
Abstract: Multi-omics data can provide a stereoscopic view to explore potential causal variations and genes, as well as underlying genetic mechanisms of complex traits. However, for many non-mammalian species, including chickens, these resources are poorly integrated and reused, greatly limiting genetic research and breeding processes of the species.Here, we constructed Galbase, an easily accessible repository that integrates public chicken multi-omics data from 928 re-sequenced genomes, 429 transcriptomes, 379 epigenomes, 15,275 QTL entries, and 7,526 associations. A total of 21.67 million SNPs, 2.71 million InDels, and 488,583 cis-regulatory elements were included. Galbase allows users to retrieve genomic variations in geographical maps, gene expression profiling in heatmaps, and epigenomic signals in peak patterns. It also provides modules for batch annotation of genes, regions, and loci based on multi-layered omics data. Additionally, a series of convenient tools, including the UCSC Genome Browser, WashU Epigenome Browser, BLAT, BLAST, and LiftOver, were also integrated to facilitate search, visualization, and analysis of sequence features.Galbase grants new opportunities to research communities to undertake in-depth functional genomic studies on chicken. All features of Galbase make it a useful resource to identify genetic variations responsible for chicken complex traits. Galbase is publicly available at http://animal.nwsuaf.edu.cn/ChickenVar .

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs is presented.

163 citations

Journal ArticleDOI
TL;DR: In this article, single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template are described.
Abstract: Adeno-associated virus (AAV) vectors are important delivery platforms for therapeutic genome editing but are severely constrained by cargo limits. Simultaneous delivery of multiple vectors can limit dose and efficacy and increase safety risks. Here, we describe single-vector, ~4.8-kb AAV platforms that express Nme2Cas9 and either two sgRNAs for segmental deletions, or a single sgRNA with a homology-directed repair (HDR) template. We also use anti-CRISPR proteins to enable production of vectors that self-inactivate via Nme2Cas9 cleavage. We further introduce a nanopore-based sequencing platform that is designed to profile rAAV genomes and serves as a quality control measure for vector homogeneity. We demonstrate that these platforms can effectively treat two disease models [type I hereditary tyrosinemia (HT-I) and mucopolysaccharidosis type I (MPS-I)] in mice by HDR-based correction of the disease allele. These results will enable the engineering of single-vector AAVs that can achieve diverse therapeutic genome editing outcomes.

34 citations

Journal ArticleDOI
TL;DR: In this paper , a genome-wide association study using whole-genome sequencing (WGS) data was conducted to identify the genetic loci and causal variants affecting the pigmentation phenotype in 65 Jintang black (JT) goats (i.e., 48 solid black vs. 17 non-classic Swiss markings).
Abstract: Abstract Background The pigmentation phenotype diversity is rich in domestic goats, and identification of the genetic loci affecting coat color in goats has long been of interest. Via the detections of selection signatures, a duplication upstream ASIP was previously reported to be a variant affecting the Swiss markings depigmentation phenotype in goats. Results We conducted a genome-wide association study using whole-genome sequencing (WGS) data to identify the genetic loci and causal variants affecting the pigmentation phenotype in 65 Jintang black (JT) goats (i.e., 48 solid black vs. 17 non-classic Swiss markings). Although a single association peak harboring the ASIP gene at 52,619,845–72,176,538 bp on chromosome 13 was obtained using a linear mixed model approach, all the SNPs and indels in this region were excluded as causal variants for the pigmentation phenotype. We then found that all 17 individuals with non-classic Swiss markings carried a 13,420-bp duplication (CHI13:63,129,198–63,142,617 bp) nearly 101 kb upstream of ASIP , and this variant was strongly associated ( P = 1.48 × 10 − 12 ) with the coat color in the 65 JT goats. The copy numbers obtained from the WGS data also showed that the duplication was present in all 53 goats from three European breeds with Swiss markings and absent in 45 of 51 non-Swiss markings goats from four other breeds and 21 Bezoars, which was further validated in 314 samples from seven populations based on PCR amplification. The copy numbers of the duplication vary in different goat breeds with Swiss markings, indicating a threshold effect instead of a dose-response effect at the molecular level. Furthermore, breakpoint flanking repeat analysis revealed that the duplication was likely to be a result of the Bov-B-mediated nonallelic homologous recombination. Conclusion We confirmed that a genomic region harboring the ASIP gene is a major locus affecting the coat color phenotype of Swiss markings in goats. Although the molecular genetic mechanisms remain unsolved, the 13,420-bp duplication upstream of ASIP is a necessary but not sufficient condition for this phenotype in goats. Moreover, the variations in the copy number of the duplication across different goat breeds do not lead to phenotypic heterogeneity.

4 citations

Journal ArticleDOI
TL;DR: The results showed that most of the 23 genes have higher expression level in adipose tissue, which can be used as a starting point to explore the development of cattle organs and tissues, as well as to improve the quality of cattle products.
Abstract: Global classification of bovine genes is important for studies of biology and tissue-specific gene editing. Herein, we classified the tissue-specific expressed genes and uncovered an important variation in the promoter region of an adipose tissue-specific lncRNA gene. Statistical analysis demonstrated that the number of genes specifically expressed in the brain was the highest, while it was lowest in the adipose tissues. A total of 1,575 genes were found to be significantly higher expressed in adipose tissues. Bioinformatic analysis and qRT-PCR were used to uncover the expression profiles of the 23 adipose tissue-specific and highly expressed genes in 8 tissues. The results showed that most of the 23 genes have higher expression level in adipose tissue. Besides, we detected a 12 bp insertion/deletion (indel) variation (rs720343880) in the promoter region of an adipose tissue-specific lncRNA gene (LOC100847835). The different genotypes of this variation were associated with carcass traits of cattle. Therefore, the outcomes of the present study can be used as a starting point to explore the development of cattle organs and tissues, as well as to improve the quality of cattle products.

3 citations