scispace - formally typeset
Search or ask a question
Author

Ruichao Ma

Bio: Ruichao Ma is an academic researcher from University of Chicago. The author has contributed to research in topics: Quantum entanglement & Quantum computer. The author has an hindex of 20, co-authored 28 publications receiving 3758 citations. Previous affiliations of Ruichao Ma include Purdue University & Harvard University.

Papers
More filters
Journal ArticleDOI
03 Dec 2015-Nature
TL;DR: Making use of the single-site-resolved control of ultracold bosonic atoms in optical lattices, two identical copies of a many-body state are prepared and interfered to directly measure quantum purity, Rényi entanglement entropy, and mutual information.
Abstract: Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Renyi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

1,040 citations

Journal ArticleDOI
21 Apr 2011-Nature
TL;DR: Using an ultracold gas of rubidium atoms confined in an optical lattice, Simon et al. as discussed by the authors simulate quantum magnetism in a chain of spins and observe a quantum phase transition from a paramagnetic phase into an antiferromagnetic phase.
Abstract: Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications for systems ranging from high-temperature superconductors to spintronic devices Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers, owing to the extreme complexity arising from quantum entanglement between the constituent magnetic spins Here we use a degenerate Bose gas of rubidium atoms confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping As we vary a magnetic field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase In the paramagnetic phase, the interaction between the spins is overwhelmed by the applied field, which aligns the spins In the antiferromagnetic phase, the interaction dominates and produces staggered magnetic ordering Magnetic domain formation is observed through both in situ site-resolved imaging and noise correlation measurements By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, thereby improving our understanding of real magnetic materials Quantum simulation of condensed-matter systems using ultracold atoms provides a way to study problems that are computationally intractable on classical computers Using an ultracold gas of rubidium atoms confined in an optical lattice, Simon et al simulate quantum magnetism in a chain of spins and observe a quantum phase transition from a paramagnetic phase into an antiferromagnetic phase This work provides a tunable platform for studies of magnetic quantum phase transitions, which have been realized in few real materials

643 citations

Journal ArticleDOI
30 Jul 2010-Science
TL;DR: In this article, the authors used single atom-single lattice site imaging to investigate the Bose-Hubbard model on a microscopic level, enabling space and time-resolved characterization of the number statistics across the superfluid-Mott insulator quantum phase transition.
Abstract: Quantum gases in optical lattices offer an opportunity to experimentally realize and explore condensed matter models in a clean, tunable system. We used single atom-single lattice site imaging to investigate the Bose-Hubbard model on a microscopic level. Our technique enables space- and time-resolved characterization of the number statistics across the superfluid-Mott insulator quantum phase transition. Site-resolved probing of fluctuations provides us with a sensitive local thermometer, allows us to identify microscopic heterostructures of low-entropy Mott domains, and enables us to measure local quantum dynamics, revealing surprisingly fast transition time scales. Our results may serve as a benchmark for theoretical studies of quantum dynamics, and may guide the engineering of low-entropy phases in a lattice.

567 citations

Journal Article
TL;DR: Single atom–single lattice site imaging is used to investigate the Bose-Hubbard model on a microscopic level and enables space- and time-resolved characterization of the number statistics across the superfluid–Mott insulator quantum phase transition.
Abstract: From Superfluid to Mott Insulator One of the most attractive characteristics of cold atomic gases in optical lattices is their ability to simulate condensed-matter systems. The results of these quantum simulations are usually averaged over the atomic ensemble, or course-grained over several lattice sites. Now, Bakr et al. (p. 547, published online 17 June; see the Perspective by DeMarco) provide a single lattice site view onto the transition of a Bose gas of Rb-87 from the superfluid to the Mott-insulating state. Characteristic concentric shells of uniform number density were observed deep in the Mott insulator regime, and probing the local quantum dynamics revealed unexpectedly short time scales. The low-defect Mott structures identified may provide a starting point for quantum magnetism experiments. Imaging of atoms that were optically trapped in lattice sites reveals local dynamics of a quantum phase transition. Quantum gases in optical lattices offer an opportunity to experimentally realize and explore condensed matter models in a clean, tunable system. We used single atom–single lattice site imaging to investigate the Bose-Hubbard model on a microscopic level. Our technique enables space- and time-resolved characterization of the number statistics across the superfluid–Mott insulator quantum phase transition. Site-resolved probing of fluctuations provides us with a sensitive local thermometer, allows us to identify microscopic heterostructures of low-entropy Mott domains, and enables us to measure local quantum dynamics, revealing surprisingly fast transition time scales. Our results may serve as a benchmark for theoretical studies of quantum dynamics, and may guide the engineering of low-entropy phases in a lattice.

464 citations

Journal ArticleDOI
13 Mar 2015-Science
TL;DR: Using interacting bosonic atoms in an optical lattice, this work directly observed fundamental effects such as the emergence of correlations in two-particle quantum walks, as well as strongly correlated Bloch oscillations in tilted optical lattices.
Abstract: Full control over the dynamics of interacting, indistinguishable quantum particles is an important prerequisite for the experimental study of strongly correlated quantum matter and the implementation of high-fidelity quantum information processing. We demonstrate such control over the quantum walk-the quantum mechanical analog of the classical random walk-in the regime where dynamics are dominated by interparticle interactions. Using interacting bosonic atoms in an optical lattice, we directly observed fundamental effects such as the emergence of correlations in two-particle quantum walks, as well as strongly correlated Bloch oscillations in tilted optical lattices. Our approach can be scaled to larger systems, greatly extending the class of problems accessible via quantum walks.

403 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
14 Jul 1996
TL;DR: The striking signature of Bose condensation was the sudden appearance of a bimodal velocity distribution below the critical temperature of ~2µK.
Abstract: Bose-Einstein condensation (BEC) has been observed in a dilute gas of sodium atoms. A Bose-Einstein condensate consists of a macroscopic population of the ground state of the system, and is a coherent state of matter. In an ideal gas, this phase transition is purely quantum-statistical. The study of BEC in weakly interacting systems which can be controlled and observed with precision holds the promise of revealing new macroscopic quantum phenomena that can be understood from first principles.

3,530 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
TL;DR: The main theoretical and experimental aspects of quantum simulation have been discussed in this article, and some of the challenges and promises of this fast-growing field have also been highlighted in this review.
Abstract: Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems However, this difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system, ie, quantum simulation Quantum simulation promises to have applications in the study of many problems in, eg, condensed-matter physics, high-energy physics, atomic physics, quantum chemistry and cosmology Quantum simulation could be implemented using quantum computers, but also with simpler, analog devices that would require less control, and therefore, would be easier to construct A number of quantum systems such as neutral atoms, ions, polar molecules, electrons in semiconductors, superconducting circuits, nuclear spins and photons have been proposed as quantum simulators This review outlines the main theoretical and experimental aspects of quantum simulation and emphasizes some of the challenges and promises of this fast-growing field

1,941 citations

Journal ArticleDOI
TL;DR: In this paper, a review of advances in this field is presented and discussed the possibilities offered by this approach to quantum simulation, as well as the possibilities of quantum simulation with ultracold quantum gases.
Abstract: Experiments with ultracold quantum gases provide a platform for creating many-body systems that can be well controlled and whose parameters can be tuned over a wide range. These properties put these systems in an ideal position for simulating problems that are out of reach for classical computers. This review surveys key advances in this field and discusses the possibilities offered by this approach to quantum simulation.

1,914 citations