scispace - formally typeset
Search or ask a question
Author

Ruiqi Zhang

Other affiliations: Tulane University
Bio: Ruiqi Zhang is an academic researcher from University of Science and Technology of China. The author has contributed to research in topics: Band gap & Phosphorene. The author has an hindex of 13, co-authored 27 publications receiving 943 citations. Previous affiliations of Ruiqi Zhang include Tulane University.

Papers
More filters
Journal ArticleDOI
TL;DR: This work finds that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also possess intrinsic optoelectronic properties of phosphorene, for both water oxidation and hydrogen reduction in photocatalytic water splitting without using extra energy.
Abstract: Two-dimensional phosphorene with desirable optoelectronic properties (ideal band gap, high carrier mobility, and strong visible light absorption) is a promising metal-free photocatalyst for water splitting. However, the band edge positions of the valence band maximum (VBM) and conduction band maximum (CBM) of phosphorene are higher than the redox potentials in photocatalytic water splitting reactions. Thus, phosphorene can only be used as the photocathode for hydrogen evolution reaction as a low-efficiency visible-light-driven photocatalyst for hydrogen production in solar water splitting cells. Here, we propose a new mechanism to improve the photocatalytic efficiency of phosphorene nanoribbons (PNRs) by modifying their edges for full reactions in photocatalytic water splitting. By employing first-principles density functional theory calculations, we find that pseudohalogen (CN and OCN) passivated PNRs not only show desired VBM and CBM band edge positions induced by edge electric dipole layer, but also po...

228 citations

Journal ArticleDOI
TL;DR: A first-principles study of the electronic properties of few-layer C2N-h2D with different stacking orders and layer numbers, which will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices.
Abstract: Recently, a new type of two-dimensional layered material, i.e. a nitrogenated holey two-dimensional structure C2N-h2D, has been synthesized using a simple wet-chemical reaction and used to fabricate a field-effect transistor device (Nat. Commun., 2015, 6, 6486). Here we have performed a first-principles study of the electronic properties of few-layer C2N-h2D with different stacking orders and layer numbers. Because of the interlayer coupling mainly in terms of the orbital interaction, band structure of this system, especially splitting of the bands and band gap, depends on its stacking order between the layers, and the band gap exhibits monotonically decreasing behavior as the layer number increases. All the few-layer C2N-h2D materials have characteristics of direct band gap, irrespective of the stacking order and layer number examined in our calculations. And bulk C2N-h2D has an indirect or direct band gap, depending on the stacking order. Besides, when we apply an out-of-plane electric field on few-layer C2N-h2D, its band gap will decrease as the electric field increases due to a giant Stark effect except for the monolayer case, and even a semiconductor-to-metal transition may occur for few-layer C2N-h2D with more layers under an appropriate electric field. Owing to their tunable band gaps in a wide range, the layered C2N-h2D materials will have tremendous opportunities to be applied in nanoscale electronic and optoelectronic devices.

176 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated single-layer phosphorene functionalized with two kinds of organic molecules, i.e., an electrophilic molecule tetracyano-p-quinodimethane (TCNQ) as electron acceptor and a nucleophilic molecule Tetrathiafulvalene (TTF), as electron donor.
Abstract: Density functional theory calculations have been carried out to investigate single-layer phosphorene functionalized with two kinds of organic molecules, i.e., an electrophilic molecule tetracyano-p-quinodimethane (TCNQ) as electron acceptor and a nucleophilic molecule tetrathiafulvalene (TTF) as electron donor. The TCNQ molecule introduces shallow acceptor states in the gap of phosphorene close to the valence band edge, which makes the doped system become a p-type semiconductor. However, when the TTF molecule is adsorbed on the phosphorene, the occupied molecular states introduced into the gap are of deep donor states so that effective n-doping for transport cannot be realized. This disadvantageous situation can be amended by applying an external out-of-plane electric field with direction from phosphorene to TTF, or an in-plane tensile strain, or their combination, under which the conduction band edge of the phosphorene moves closer to the TTF-derived donor states, and then the TTF-adsorbed phosphorene sy...

152 citations

Journal ArticleDOI
TL;DR: In this paper, first-principles calculations are performed to investigate the effects of interlayer coupling and the electric field on the electronic structures of graphene and molybdenum disulphide (MoS2) monolayers in two-dimensional ultrathin graphene and MoS2 heterostructures.
Abstract: Combining the electronic structures of graphene and molybdenum disulphide (MoS2) monolayers in two-dimensional (2D) ultrathin graphene and MoS2 heterostructures has been realized experimentally for novel nanoelectronic devices. Here, first-principles calculations are performed to investigate the effects of interlayer coupling and the electric field on the electronic structures of graphene and MoS2 heterobilayers (G/MoS2 HBLs). We find that an n-type Schottky contact is formed at the G/MoS2 interface with a small Schottky barrier of 0.23 eV, because the work function of graphene is close to the electron affinity of MoS2. Furthermore, increasing the interfacial distances between graphene and MoS2 can reduce the n-type Schottky barriers at the G/MoS2 interface. But applying the electric field perpendicular to the G/MoS2 HBL can not only control the Schottky barriers but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the G/MoS2 interface. Tunable p-type doping in graphene is easily achieved at negative electric fields because electrons can easily transfer from the Dirac point of graphene to the conduction band of MoS2.

113 citations

Journal ArticleDOI
TL;DR: In this paper, a 2D metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N was proposed as a promising candidate for direct Z-scheme photocatalysts for water splitting.
Abstract: Mimicking the natural photosynthesis in plants, Z-scheme water splitting is a promising strategy to improve photocatalytic activity. Searching for the direct Z-scheme photocatalysts is urgent and the crucial factor for the photocatalytic efficiency is the photogenerated electron-hole ( e-h) recombination rate at the interface of two photosystems. In this report, based on time-dependent ab initio nonadiabatic molecular dynamics (NAMD) investigation, we first report a two-dimensional (2D) metal-free van der Waals (vdW) heterostructure consisting of monolayer BCN and C2N as a promising candidate for direct Z-scheme photocatalysts for water splitting. It is shown that the time scale of e-h recombination of BCN/C2N is within 2 ps. Among such e-h recombination events, more than 85% are through the e-h recombination at the interface. NAMD simulations based on frozen phonon method prove that such an ultrafast interlayer e-h recombination is assisted by intralayer optical phonon modes and the interlayer shear phonon mode induced by vdW interaction. In these crucial phonon modes, the interlayer relative movements which are lacking in traditional heterostructures with strong interactions, yet exist generally in various 2D vdW heterostructures, are significant. Our results prove that the 2D vdW heterostructure family is convincing for a new type of direct Z-scheme photocatalysts searching.

98 citations


Cited by
More filters
01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: In this review, the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials are explored, and perspectives and challenges for the future of this emerging field are offered.
Abstract: Phosphorene, an emerging two-dimensional material, has received considerable attention due to its layer-controlled direct bandgap, high carrier mobility, negative Poisson's ratio and unique in-plane anisotropy. As cousins of phosphorene, 2D group-VA arsenene, antimonene and bismuthene have also garnered tremendous interest due to their intriguing structures and fascinating electronic properties. 2D group-VA family members are opening up brand-new opportunities for their multifunctional applications encompassing electronics, optoelectronics, topological spintronics, thermoelectrics, sensors, Li- or Na-batteries. In this review, we extensively explore the latest theoretical and experimental progress made in the fundamental properties, fabrications and applications of 2D group-VA materials, and offer perspectives and challenges for the future of this emerging field.

689 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent progress in phosphorene research is presented, touching upon topics on fabrication, properties, and applications; they also discuss challenges and future research directions.
Abstract: Phosphorene, the single- or few-layer form of black phosphorus, was recently rediscovered as a two-dimensional layered material holding great promise for applications in electronics and optoelectronics. Research into its fundamental properties and device applications has since seen exponential growth. In this Perspective, we review recent progress in phosphorene research, touching upon topics on fabrication, properties, and applications; we also discuss challenges and future research directions. We highlight the intrinsically anisotropic electronic, transport, optoelectronic, thermoelectric, and mechanical properties of phosphorene resulting from its puckered structure in contrast to those of graphene and transition-metal dichalcogenides. The facile fabrication and novel properties of phosphorene have inspired design and demonstration of new nanodevices; however, further progress hinges on resolutions to technical obstructions like surface degradation effects and nonscalable fabrication techniques. We also briefly describe the latest developments of more sophisticated design concepts and implementation schemes that address some of the challenges in phosphorene research. It is expected that this fascinating material will continue to offer tremendous opportunities for research and development for the foreseeable future.

605 citations

Book ChapterDOI
11 Jan 2018
TL;DR: Bigler Conservation of Momentum Unit: Momentum MA Curriculum Frameworks (2016): HS-PS2-2 MA curriculum as discussed by the authors 2.5 Mastery Objective(s): (Students will be able to...)  Solve problems involving collisions in which momentum is conserved, with or without an external impulse.
Abstract: Physics 1 Mr. Bigler Conservation of Momentum Unit: Momentum MA Curriculum Frameworks (2016): HS-PS2-2 MA Curriculum Frameworks (2006): 2.5 Mastery Objective(s): (Students will be able to...)  Solve problems involving collisions in which momentum is conserved, with or without an external impulse. Success Criteria:  Masses and velocities are correctly identified for each object, both before and after the collision.  Variables are correctly identified and substituted correctly into the correct part of the equation.  Algebra is correct and rounding to appropriate number of significant figures is reasonable. Tier 2 Vocabulary: momentum, collision Language Objectives:  Explain what happens before, during, and after a collision from the point of view of one of the objects participating in the collision.

464 citations