scispace - formally typeset
Search or ask a question
Author

Rune Barnkob

Bio: Rune Barnkob is an academic researcher from Technische Universität München. The author has contributed to research in topics: Tracking (particle physics) & Acoustic radiation force. The author has an hindex of 13, co-authored 31 publications receiving 1397 citations. Previous affiliations of Rune Barnkob include Technical University of Denmark & Ludwig Maximilian University of Munich.

Papers
More filters
Journal ArticleDOI
TL;DR: A numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave shows the transition in the acoustrophoretic particle motion from being dominated by streaming-induced drag tobeing dominated by radiation forces as a function of particle size, channel geometry, and material properties.
Abstract: We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

427 citations

Journal ArticleDOI
TL;DR: A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions.
Abstract: A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads in straight water-filled silicon/glass microchannels. The system is actuated by a PZT piezo transducer attached beneath the chip and driven by an applied ac voltage near its eigenfrequency of 2 MHz. For a given frequency a number of particle tracks are recorded by a CCD camera and fitted to a theoretical expression for the acoustophoretic motion of the microbeads. From the curve fits we obtain the acoustic energy density, and hence the pressure amplitude as well as the acoustophoretic force. By plotting the obtained energy densities as a function of applied frequency, we obtain Lorentzian line shapes, from which the resonance frequency and the Q factor for each resonance peak are derived. Typical measurements yield acoustic energy densities of the order of 10 J/m3, pressure amplitudes of 0.2 MPa, and Q factors around 500. The observed half wavelength of the transverse acoustic pressure wave is equal within 2% to the measured width w = 377 μm of the channel.

240 citations

Journal ArticleDOI
TL;DR: In this article, the authors present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel, and they predict theoretically and confirm experimentally that the ratio between the acoustic radiation and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size.
Abstract: We present microparticle image velocimetry measurements of suspended microparticles of diameters from 0.6 to 10 μm undergoing acoustophoresis in an ultrasound symmetry plane in a microchannel. The motion of the smallest particles is dominated by the Stokes drag from the induced acoustic streaming flow, while the motion of the largest particles is dominated by the acoustic radiation force. For all particle sizes we predict theoretically how much of the particle velocity is due to radiation and streaming, respectively. These predictions include corrections for particle-wall interactions and ultrasonic thermoviscous effects and match our measurements within the experimental uncertainty. Finally, we predict theoretically and confirm experimentally that the ratio between the acoustic radiation- and streaming-induced particle velocities is proportional to the actuation frequency, the acoustic contrast factor, and the square of the particle size, while it is inversely proportional to the kinematic viscosity.

214 citations

Journal ArticleDOI
TL;DR: Analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels are derived, allowing for quantitative comparison between theoretical predictions and measurements of the streaming-induced motion of small 0.5-μm-diameter particles.
Abstract: We derive analytical expressions for the three-dimensional (3D) acoustophoretic motion of spherical microparticles in rectangular microchannels. The motion is generated by the acoustic radiation force and the acoustic streaming-induced drag force. In contrast to the classical theory of Rayleigh streaming in shallow, infinite, parallel-plate channels, our theory does include the effect of the microchannel side walls. The resulting predictions agree well with numerics and experimental measurements of the acoustophoretic motion of polystyrene spheres with nominal diameters of 0.537 and 5.33 μm. The 3D particle motion was recorded using astigmatism particle tracking velocimetry under controlled thermal and acoustic conditions in a long, straight, rectangular microchannel actuated in one of its transverse standing ultrasound-wave resonance modes with one or two half-wavelengths. The acoustic energy density is calibrated in situ based on measurements of the radiation dominated motion of large 5-μm-diameter particles, allowing for quantitative comparison between theoretical predictions and measurements of the streaming-induced motion of small 0.5-μm-diameter particles.

149 citations

Journal ArticleDOI
TL;DR: A numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves using a perturbation approach and demonstrates the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surfaceoustic waves.
Abstract: We present a numerical study of the acoustophoretic motion of particles suspended in a liquid-filled PDMS microchannel on a lithium niobate substrate acoustically driven by surface acoustic waves. We employ a perturbation approach where the flow variables are divided into first- and second-order fields. We use impedance boundary conditions to model the PDMS microchannel walls and we model the acoustic actuation by a displacement function from the literature based on a numerical study of piezoelectric actuation. Consistent with the type of actuation, the obtained first-order field is a horizontal standing wave that travels vertically from the actuated wall towards the upper PDMS wall. This is in contrast to what is observed in bulk acoustic wave devices. The first-order fields drive the acoustic streaming, as well as the time-averaged acoustic radiation force acting on suspended particles. We analyze the motion of suspended particles driven by the acoustic streaming drag and the radiation force. We examine a range of particle diameters to demonstrate the transition from streaming-drag-dominated acoustophoresis to radiation-force-dominated acoustophoresis. Finally, as an application of our numerical model, we demonstrate the capability to tune the position of the vertical pressure node along the channel width by tuning the phase difference between two incoming surface acoustic waves.

149 citations


Cited by
More filters
01 May 2005

2,648 citations

Journal ArticleDOI
TL;DR: The theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended are discussed, and the SAW-enabled microfluidic devices demonstrated to date are reviewed.
Abstract: The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

738 citations

Journal ArticleDOI
TL;DR: The theory of the acoustic radiation force is presented; a second-order, time-averaged effect responsible for the acoustophoretic motion of suspended, micrometre-sized particles in an ultrasound field.
Abstract: In this paper, Part 7 of the thematic tutorial series “Acoustofluidics – exploiting ultrasonic standing waves, forces and acoustic streaming in microfluidic systems for cell and particle manipulation ”, we present the theory of the acoustic radiation force; a second-order, time-averaged effect responsible for the acoustophoretic motion of suspended, micrometre-sized particles in an ultrasound field.

700 citations

Journal ArticleDOI
TL;DR: A numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave shows the transition in the acoustrophoretic particle motion from being dominated by streaming-induced drag tobeing dominated by radiation forces as a function of particle size, channel geometry, and material properties.
Abstract: We present a numerical study of the transient acoustophoretic motion of microparticles suspended in a liquid-filled microchannel and driven by the acoustic forces arising from an imposed standing ultrasound wave: the acoustic radiation force from the scattering of sound waves on the particles and the Stokes drag force from the induced acoustic streaming flow. These forces are calculated numerically in two steps. First, the thermoacoustic equations are solved to first order in the imposed ultrasound field taking into account the micrometer-thin but crucial thermoviscous boundary layer near the rigid walls. Second, the products of the resulting first-order fields are used as source terms in the time-averaged second-order equations, from which the net acoustic forces acting on the particles are determined. The resulting acoustophoretic particle velocities are quantified for experimentally relevant parameters using a numerical particle-tracking scheme. The model shows the transition in the acoustophoretic particle motion from being dominated by streaming-induced drag to being dominated by radiation forces as a function of particle size, channel geometry, and material properties.

427 citations

Journal ArticleDOI
TL;DR: 3D acoustic tweezers are presented, which can trap and manipulate single cells and particles along three mutually orthogonal axes of motion by recourse to surface acoustic waves, and are shown to offer better performance over prior cell manipulation techniques in terms of both accurate and precise motion.
Abstract: The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

424 citations