scispace - formally typeset
Search or ask a question
Author

Runmin Cong

Bio: Runmin Cong is an academic researcher from Beijing Jiaotong University. The author has contributed to research in topics: Computer science & Feature (computer vision). The author has an hindex of 24, co-authored 68 publications receiving 2181 citations. Previous affiliations of Runmin Cong include City University of Hong Kong & Tianjin University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: This paper constructs an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images and proposes an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs).
Abstract: Underwater image enhancement has been attracting much attention due to its significance in marine engineering and aquatic robotics. Numerous underwater image enhancement algorithms have been proposed in the last few years. However, these algorithms are mainly evaluated using either synthetic datasets or few selected real-world images. It is thus unclear how these algorithms would perform on images acquired in the wild and how we could gauge the progress in the field. To bridge this gap, we present the first comprehensive perceptual study and analysis of underwater image enhancement using large-scale real-world images. In this paper, we construct an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images. We treat the rest 60 underwater images which cannot obtain satisfactory reference images as challenging data. Using this dataset, we conduct a comprehensive study of the state-of-the-art underwater image enhancement algorithms qualitatively and quantitatively. In addition, we propose an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs). The benchmark evaluations and the proposed Water-Net demonstrate the performance and limitations of state-of-the-art algorithms, which shed light on future research in underwater image enhancement. The dataset and code are available at https://li-chongyi.github.io/proj_benchmark.html .

697 citations

Journal ArticleDOI
Chongyi Li1, Jichang Guo1, Runmin Cong1, Yanwei Pang1, Bo Wang1 
TL;DR: Extensive experiments demonstrate that the proposed method achieves better visual quality, more valuable information, and more accurate color restoration than several state-of-the-art methods, even for underwater images taken under several challenging scenes.
Abstract: Images captured under water are usually degraded due to the effects of absorption and scattering. Degraded underwater images show some limitations when they are used for display and analysis. For example, underwater images with low contrast and color cast decrease the accuracy rate of underwater object detection and marine biology recognition. To overcome those limitations, a systematic underwater image enhancement method, which includes an underwater image dehazing algorithm and a contrast enhancement algorithm, is proposed. Built on a minimum information loss principle, an effective underwater image dehazing algorithm is proposed to restore the visibility, color, and natural appearance of underwater images. A simple yet effective contrast enhancement algorithm is proposed based on a kind of histogram distribution prior, which increases the contrast and brightness of underwater images. The proposed method can yield two versions of enhanced output. One version with relatively genuine color and natural appearance is suitable for display. The other version with high contrast and brightness can be used for extracting more valuable information and unveiling more details. Simulation experiment, qualitative and quantitative comparisons, as well as color accuracy and application tests are conducted to evaluate the performance of the proposed method. Extensive experiments demonstrate that the proposed method achieves better visual quality, more valuable information, and more accurate color restoration than several state-of-the-art methods, even for underwater images taken under several challenging scenes.

459 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: A novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network and shows that it generalizes well to diverse lighting conditions.
Abstract: The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed.

447 citations

Journal ArticleDOI
TL;DR: Zhang et al. as mentioned in this paper reviewed different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works, and the experimental analysis and discussion are conducted to provide a holistic overview of different saliency detectors.
Abstract: The visual saliency detection model simulates the human visual system to perceive the scene and has been widely used in many vision tasks. With the development of acquisition technology, more comprehensive information, such as depth cue, inter-image correspondence, or temporal relationship, is available to extend image saliency detection to RGBD saliency detection, co-saliency detection, or video saliency detection. The RGBD saliency detection model focuses on extracting the salient regions from RGBD images by combining the depth information. The co-saliency detection model introduces the inter-image correspondence constraint to discover the common salient object in an image group. The goal of the video saliency detection model is to locate the motion-related salient object in video sequences, which considers the motion cue and spatiotemporal constraint jointly. In this paper, we review different types of saliency detection algorithms, summarize the important issues of the existing methods, and discuss the existent problems and future works. Moreover, the evaluation datasets and quantitative measurements are briefly introduced, and the experimental analysis and discussion are conducted to provide a holistic overview of different saliency detection methods.

328 citations

Posted Content
TL;DR: Zhang et al. as discussed by the authors proposed a zero-reference deep curve estimation (Zero-DCE) method, which formulates light enhancement as a task of image-specific curve estimation with a deep network.
Abstract: The paper presents a novel method, Zero-Reference Deep Curve Estimation (Zero-DCE), which formulates light enhancement as a task of image-specific curve estimation with a deep network. Our method trains a lightweight deep network, DCE-Net, to estimate pixel-wise and high-order curves for dynamic range adjustment of a given image. The curve estimation is specially designed, considering pixel value range, monotonicity, and differentiability. Zero-DCE is appealing in its relaxed assumption on reference images, i.e., it does not require any paired or unpaired data during training. This is achieved through a set of carefully formulated non-reference loss functions, which implicitly measure the enhancement quality and drive the learning of the network. Our method is efficient as image enhancement can be achieved by an intuitive and simple nonlinear curve mapping. Despite its simplicity, we show that it generalizes well to diverse lighting conditions. Extensive experiments on various benchmarks demonstrate the advantages of our method over state-of-the-art methods qualitatively and quantitatively. Furthermore, the potential benefits of our Zero-DCE to face detection in the dark are discussed. Code and model will be available at this https URL.

300 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey on recent advances of image super-resolution techniques using deep learning approaches in a systematic way, which can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR.
Abstract: Image Super-Resolution (SR) is an important class of image processing techniqueso enhance the resolution of images and videos in computer vision. Recent years have witnessed remarkable progress of image super-resolution using deep learning techniques. This article aims to provide a comprehensive survey on recent advances of image super-resolution using deep learning approaches. In general, we can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR. In addition, we also cover some other important issues, such as publicly available benchmark datasets and performance evaluation metrics. Finally, we conclude this survey by highlighting several future directions and open issues which should be further addressed by the community in the future.

837 citations

Posted Content
TL;DR: This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019), and makes an in-deep analysis of their challenges as well as technical improvements in recent years.
Abstract: Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

802 citations

Journal ArticleDOI
TL;DR: This paper constructs an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images and proposes an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs).
Abstract: Underwater image enhancement has been attracting much attention due to its significance in marine engineering and aquatic robotics. Numerous underwater image enhancement algorithms have been proposed in the last few years. However, these algorithms are mainly evaluated using either synthetic datasets or few selected real-world images. It is thus unclear how these algorithms would perform on images acquired in the wild and how we could gauge the progress in the field. To bridge this gap, we present the first comprehensive perceptual study and analysis of underwater image enhancement using large-scale real-world images. In this paper, we construct an Underwater Image Enhancement Benchmark (UIEB) including 950 real-world underwater images, 890 of which have the corresponding reference images. We treat the rest 60 underwater images which cannot obtain satisfactory reference images as challenging data. Using this dataset, we conduct a comprehensive study of the state-of-the-art underwater image enhancement algorithms qualitatively and quantitatively. In addition, we propose an underwater image enhancement network (called Water-Net) trained on this benchmark as a baseline, which indicates the generalization of the proposed UIEB for training Convolutional Neural Networks (CNNs). The benchmark evaluations and the proposed Water-Net demonstrate the performance and limitations of state-of-the-art algorithms, which shed light on future research in underwater image enhancement. The dataset and code are available at https://li-chongyi.github.io/proj_benchmark.html .

697 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a skip-layer network structure to predict human attention from multiple convolutional layers with various reception fields, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales.
Abstract: In this paper, we aim to predict human eye fixation with view-free scenes based on an end-to-end deep learning architecture. Although convolutional neural networks (CNNs) have made substantial improvement on human attention prediction, it is still needed to improve the CNN-based attention models by efficiently leveraging multi-scale features. Our visual attention network is proposed to capture hierarchical saliency information from deep, coarse layers with global saliency information to shallow, fine layers with local saliency response. Our model is based on a skip-layer network structure, which predicts human attention from multiple convolutional layers with various reception fields. Final saliency prediction is achieved via the cooperation of those global and local predictions. Our model is learned in a deep supervision manner, where supervision is directly fed into multi-level layers, instead of previous approaches of providing supervision only at the output layer and propagating this supervision back to earlier layers. Our model thus incorporates multi-level saliency predictions within a single network, which significantly decreases the redundancy of previous approaches of learning multiple network streams with different input scales. Extensive experimental analysis on various challenging benchmark data sets demonstrate our method yields the state-of-the-art performance with competitive inference time. 1 1 Our source code is available at https://github.com/wenguanwang/deepattention .

532 citations