scispace - formally typeset
Search or ask a question
Author

Runze Wang

Bio: Runze Wang is an academic researcher from Nanjing Agricultural University. The author has contributed to research in topics: PEAR & Gene. The author has an hindex of 10, co-authored 21 publications receiving 559 citations.
Topics: PEAR, Gene, Biology, Genome, Domestication

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive landscape of different modes of gene duplication across the plant kingdom is identified by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.
Abstract: The sharp increase of plant genome and transcriptome data provide valuable resources to investigate evolutionary consequences of gene duplication in a range of taxa, and unravel common principles underlying duplicate gene retention. We survey 141 sequenced plant genomes to elucidate consequences of gene and genome duplication, processes central to the evolution of biodiversity. We develop a pipeline named DupGen_finder to identify different modes of gene duplication in plants. Genes derived from whole-genome, tandem, proximal, transposed, or dispersed duplication differ in abundance, selection pressure, expression divergence, and gene conversion rate among genomes. The number of WGD-derived duplicate genes decreases exponentially with increasing age of duplication events—transposed duplication- and dispersed duplication-derived genes declined in parallel. In contrast, the frequency of tandem and proximal duplications showed no significant decrease over time, providing a continuous supply of variants available for adaptation to continuously changing environments. Moreover, tandem and proximal duplicates experienced stronger selective pressure than genes formed by other modes and evolved toward biased functional roles involved in plant self-defense. The rate of gene conversion among WGD-derived gene pairs declined over time, peaking shortly after polyploidization. To provide a platform for accessing duplicated gene pairs in different plants, we constructed the Plant Duplicate Gene Database. We identify a comprehensive landscape of different modes of gene duplication across the plant kingdom by comparing 141 genomes, which provides a solid foundation for further investigation of the dynamic evolution of duplicate genes.

461 citations

Journal ArticleDOI
TL;DR: In this study, a candidate R2R3 MYB TF, PyMYB114, was identified by linkage to the quantitative trait loci for red skin color on linkage group 5 in a population of Chinese pear, and this interaction network provides insight into the coloration of fruits and the interaction of different TFs to regulate anthocyanin biosynthesis.
Abstract: Red fruits are popular and widely accepted by consumers because of an enhanced appearance and enriched anthocyanins. The molecular mechanism of anthocyanin regulation in red-skinned pear (Pyrus) has been studied, and the genes encoding the biosynthetic steps and several transcription factors (TFs) have been characterized. In this study, a candidate R2R3 MYB TF, PyMYB114, was identified by linkage to the quantitative trait loci (QTL) for red skin color on linkage group 5 in a population of Chinese pear (Pyrus bretschneideri). The function of PyMYB114 was verified by transient transformation in tobacco (Nicotinana tabacum) leaves and strawberry (Fragaria) and pear fruits, resulting in the biosynthesis of anthocyanin. Suppression of PyMYB114 could inhibit anthocyanin biosynthesis in red-skinned pears. The ERF/AP2 TF PyERF3 was found to interact with PyMYB114 and its partner PybHLH3 to co-regulate anthocyanin biosynthesis, as shown by a dual luciferase reporter system and a yeast two-hybrid assay. In addition, the transcript abundance of PyMYB114 and PyMYB10 were correlated, and co-transformation of these two genes into tobacco and strawberry led to enhanced anthocyanin biosynthesis. This interaction network provides insight into the coloration of fruits and the interaction of different TFs to regulate anthocyanin biosynthesis.

235 citations

Journal ArticleDOI
TL;DR: This study proposes a model for the divergence, dissemination, and independent domestication of Asian and European pears in which pear has eventually spread to western Asia, and then on to Europe, thus promoting outcrossing and accounting for pear genome diversity across the Eurasian continent.
Abstract: Pear (Pyrus) is a globally grown fruit, with thousands of cultivars in five domesticated species and dozens of wild species. However, little is known about the evolutionary history of these pear species and what has contributed to the distinct phenotypic traits between Asian pears and European pears. We report the genome resequencing of 113 pear accessions from worldwide collections, representing both cultivated and wild pear species. Based on 18,302,883 identified SNPs, we conduct phylogenetics, population structure, gene flow, and selective sweep analyses. Furthermore, we propose a model for the divergence, dissemination, and independent domestication of Asian and European pears in which pear, after originating in southwest China and then being disseminated throughout central Asia, has eventually spread to western Asia, and then on to Europe. We find evidence for rapid evolution and balancing selection for S-RNase genes that have contributed to the maintenance of self-incompatibility, thus promoting outcrossing and accounting for pear genome diversity across the Eurasian continent. In addition, separate selective sweep signatures between Asian pears and European pears, combined with co-localized QTLs and differentially expressed genes, underline distinct phenotypic fruit traits, including flesh texture, sugar, acidity, aroma, and stone cells. This study provides further clarification of the evolutionary history of pear along with independent domestication of Asian and European pears. Furthermore, it provides substantive and valuable genomic resources that will significantly advance pear improvement and molecular breeding efforts.

115 citations

Journal ArticleDOI
TL;DR: This study identified the different modes of gene duplication in pear and investigated the evolution and expansion patterns of the gene families involved in sugar and organic acid metabolism pathways, which are closely related to the fruit quality and taste in pear.
Abstract: Pear is an important fruit crop of the Rosaceae family and has experienced two rounds of ancient whole-genome duplications (WGDs). However, whether different types of gene duplications evolved differently after duplication remains unclear in the pear genome. In this study, we identified the different modes of gene duplication in pear. Duplicate genes derived from WGD, tandem, proximal, retrotransposed, DNA-based transposed or dispersed duplications differ in genomic distribution, gene features, selection pressure, expression divergence, regulatory divergence and biological roles. Widespread sequence, expression and regulatory divergence have occurred between duplicate genes over the 30-45 million years of evolution after the recent genome duplication in pear. The retrotransposed genes show relatively higher expression and regulatory divergence than other gene duplication modes. In contrast, WGD genes underwent a slower sequence divergence and may be influenced by abundant gene conversion events. Moreover, the different classes of duplicate genes exhibited biased functional roles. We also investigated the evolution and expansion patterns of the gene families involved in sugar and organic acid metabolism pathways, which are closely related to the fruit quality and taste in pear. Single-gene duplications largely account for the extensive expansion of gene families involved in the sorbitol metabolism pathway in pear. Gene family expansion was also detected in the sucrose metabolism pathway and tricarboxylic acid cycle pathways. Thus, this study provides insights into the evolutionary fates of duplicated genes.

71 citations

Journal ArticleDOI
11 Sep 2017-PeerJ
TL;DR: The results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear, and suggest that whole-genome duplications have played key roles in the expansion of the MADS family.
Abstract: MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.

33 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

05 Mar 2001
TL;DR: It is indicated that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.
Abstract: Because lignin limits the use of wood for fiber, chemical, and energy production, strategies for its downregulation are of considerable interest. We have produced transgenic aspen (Populus tremuloides Michx.) trees in which expression of a lignin biosynthetic pathway gene Pt4CL1 encoding 4-coumarate:coenzyme A ligase (4CL) has been downregulated by antisense inhibition. Trees with suppressed Pt4CL1 expression exhibited up to a 45% reduction of lignin, but this was compensated for by a 15% increase in cellulose. As a result, the total lignin–cellulose mass remained essentially unchanged. Leaf, root, and stem growth were substantially enhanced, and structural integrity was maintained both at the cellular and whole-plant levels in the transgenic lines. Our results indicate that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials.

717 citations

Journal Article
TL;DR: In this paper, the authors used gene specific primers to show that the three activators of apple anthocyanin (myb10/myb1/myBA) are likely alleles of each other.
Abstract: Background The control of plant anthocyanin accumulation is via transcriptional regulation of the genes encoding the biosynthetic enzymes. A key activator appears to be an R2R3 MYB transcription factor. In apple fruit, skin anthocyanin levels are controlled by a gene called MYBA or MYB1, while the gene determining fruit flesh and foliage anthocyanin has been termed MYB10. In order to further understand tissue-specific anthocyanin regulation we have isolated orthologous MYB genes from all the commercially important rosaceous species. Results We use gene specific primers to show that the three MYB activators of apple anthocyanin (MYB10/MYB1/MYBA) are likely alleles of each other. MYB transcription factors, with high sequence identity to the apple gene were isolated from across the rosaceous family (e.g. apples, pears, plums, cherries, peaches, raspberries, rose, strawberry). Key identifying amino acid residues were found in both the DNA-binding and C-terminal domains of these MYBs. The expression of these MYB10 genes correlates with fruit and flower anthocyanin levels. Their function was tested in tobacco and strawberry. In tobacco, these MYBs were shown to induce the anthocyanin pathway when co-expressed with bHLHs, while over-expression of strawberry and apple genes in the crop of origin elevates anthocyanins. Conclusions This family-wide study of rosaceous R2R3 MYBs provides insight into the evolution of this plant trait. It has implications for the development of new coloured fruit and flowers, as well as aiding the understanding of temporal-spatial colour change.

480 citations

11 Jan 2014
TL;DR: Sequencing of genomes from three Brassicaceae species and their joint analysis with six previously sequenced crucifer genomes confirm that most of the identified CNSs are evolving under medium to strong purifying selection, and highlight both similarities and several key differences between the regulatory DNA of plants and other species.
Abstract: Despite the central importance of noncoding DNA to gene regulation and evolution, understanding of the extent of selection on plant noncoding DNA remains limited compared to that of other organisms. Here we report sequencing of genomes from three Brassicaceae species (Leavenworthia alabamica, Sisymbrium irio and Aethionema arabicum) and their joint analysis with six previously sequenced crucifer genomes. Conservation across orthologous bases suggests that at least 17% of the Arabidopsis thaliana genome is under selection, with nearly one-quarter of the sequence under selection lying outside of coding regions. Much of this sequence can be localized to approximately 90,000 conserved noncoding sequences (CNSs) that show evidence of transcriptional and post-transcriptional regulation. Population genomics analyses of two crucifer species, A. thaliana and Capsella grandiflora, confirm that most of the identified CNSs are evolving under medium to strong purifying selection. Overall, these CNSs highlight both similarities and several key differences between the regulatory DNA of plants and other species.

299 citations

Journal ArticleDOI
TL;DR: Estimates of timing can be improved through the application of molecular clock methodology to multigene datasets and phenotypic change can be quantified in morphospaces, underscoring the potential of plants as a model system for investigating the role WGD in macroevolution.

208 citations