scispace - formally typeset
Search or ask a question
Author

Rupinder Dhaliwal

Other affiliations: Queen's University
Bio: Rupinder Dhaliwal is an academic researcher from Kingston General Hospital. The author has contributed to research in topics: Parenteral nutrition & Intensive care. The author has an hindex of 37, co-authored 76 publications receiving 9407 citations. Previous affiliations of Rupinder Dhaliwal include Queen's University.


Papers
More filters
Journal ArticleDOI
TL;DR: Significant potential benefit from implementing evidence-based clinical practice guidelines for nutrition support in critically ill adults is improved clinical outcomes of critically ill patients (reduced mortality and ICU stay) and potential harms of implementing these guidelines include increased complications and costs related to the suggested interventions.
Abstract: OBJECTIVE: This study was conducted to develop evidence-based clinical practice guidelines for nutrition support (ie, enteral and parenteral nutrition) in mechanically ventilated critically ill adults. OPTIONS: The following interventions were systematically reviewed for inclusion in the guidelines: enteral nutrition (EN) versus parenteral nutrition (PN), early versus late EN, dose of EN, composition of EN (protein, carbohydrates, lipids, immune-enhancing additives), strategies to optimize delivery of EN and minimize risks (ie, rate of advancement, checking residuals, use of bedside algorithms, motility agents, small bowel versus gastric feedings, elevation of the head of the bed, closed delivery systems, probiotics, bolus administration), enteral nutrition in combination with supplemental PN, use of PN versus standard care in patients with an intact gastrointestinal tract, dose of PN and composition of PN (protein, carbohydrates, IV lipids, additives, vitamins, trace elements, immune enhancing substances...

1,414 citations

Journal ArticleDOI
TL;DR: Intensive insulin therapy significantly increased the risk of hypoglycemia and conferred no overall mortality benefit among critically ill patients, but this therapy may be beneficial to patients admitted to a surgical ICU.
Abstract: Background: Hyperglycemia is associated with increased mortality in critically ill patients. Randomized trials of intensive insulin therapy have reported inconsistent effects on mortality and increased rates of severe hypoglycemia. We conducted a meta-analysis to update the totality of evidence regarding the influence of intensive insulin therapy compared with conventional insulin therapy on mortality and severe hypoglycemia in the intensive care unit (ICU). Methods: We conducted searches of electronic databases, abstracts from scientific conferences and bibliographies of relevant articles. We included published randomized controlled trials conducted in the ICU that directly compared intensive insulin therapy with conventional glucose management and that documented mortality. We included in our meta-analysis the data from the recent NICE-SUGAR (Normoglycemia in Intensive Care Evaluation — Survival Using Glucose Algorithm Regulation) study. Results: We included 26 trials involving a total of 13 567 patients in our meta-analysis. Among the 26 trials that reported mortality, the pooled relative risk (RR) of death with intensive insulin therapy compared with conventional therapy was 0.93 (95% confidence interval [CI] 0.83–1.04). Among the 14 trials that reported hypoglycemia, the pooled RR with intensive insulin therapy was 6.0 (95% CI 4.5–8.0). The ICU setting was a contributing factor, with patients in surgical ICUs appearing to benefit from intensive insulin therapy (RR 0.63, 95% CI 0.44–0.91); patients in the other ICU settings did not (medical ICU: RR 1.0, 95% CI 0.78–1.28; mixed ICU: RR 0.99, 95% CI 0.86–1.12). The different targets of intensive insulin therapy (glucose level ≤ 6.1 mmol/L v. ≤ 8.3 mmol/L) did not influence either mortality or risk of hypoglycemia. Interpretation: Intensive insulin therapy significantly increased the risk of hypoglycemia and conferred no overall mortality benefit among critically ill patients. However, this therapy may be beneficial to patients admitted to a surgical ICU.

1,034 citations

Journal ArticleDOI
TL;DR: Increased intakes of energy and protein appear to be associated with improved clinical outcomes in critically ill patients, particularly when BMI is <25 or ≥35, particularly in patients with a BMI <25 and ≥35.
Abstract: The objective of this study was to examine the relationship between the amount of energy and protein administered and clinical outcomes, and the extent to which pre-morbid nutritional status influenced this relationship. We conducted an observational cohort study of nutrition practices in 167 intensive care units (ICUs) across 37 countries. Patient demographics were collected, and the type and amount of nutrition received were recorded daily for a maximum of 12 days. Patients were followed prospectively to determine 60-day mortality and ventilator-free days (VFDs). We used body mass index (BMI, kg/m2) as a marker of nutritional status prior to ICU admission. Regression models were developed to evaluate the relationship between nutrition received and 60-day mortality and VFDs, and to examine how BMI modifies this relationship. Data were collected on 2,772 mechanically ventilated patients who received an average of 1,034 kcal/day and 47 g protein/day. An increase of 1,000 cal per day was associated with reduced mortality [odds ratio for 60-day mortality 0.76; 95% confidence intervals (CI) 0.61–0.95, p = 0.014] and an increased number of VFDs (3.5 VFD, 95% CI 1.2–5.9, p = 0.003). The effect of increased calories associated with lower mortality was observed in patients with a BMI <25 and ≥35 with no benefit for patients with a BMI 25 to <35. Similar results were observed when comparing increasing protein intake and its effect on mortality. Increased intakes of energy and protein appear to be associated with improved clinical outcomes in critically ill patients, particularly when BMI is <25 or ≥35.

797 citations

Journal ArticleDOI
TL;DR: This scoring algorithm may be helpful in identifying critically ill patients most likely to benefit from aggressive nutrition therapy in the intensive care unit (ICU), and based on the statistical significance in the multivariable model, the final score used all candidate variables except BMI.
Abstract: To develop a scoring method for quantifying nutrition risk in the intensive care unit (ICU). A prospective, observational study of patients expected to stay > 24 hours. We collected data for key variables considered for inclusion in the score which included: age, baseline APACHE II, baseline SOFA score, number of comorbidities, days from hospital admission to ICU admission, Body Mass Index (BMI) < 20, estimated % oral intake in the week prior, weight loss in the last 3 months and serum interleukin-6 (IL-6), procalcitonin (PCT), and C-reactive protein (CRP) levels. Approximate quintiles of each variable were assigned points based on the strength of their association with 28 day mortality. A total of 597 patients were enrolled in this study. Based on the statistical significance in the multivariable model, the final score used all candidate variables except BMI, CRP, PCT, estimated percentage oral intake and weight loss. As the score increased, so did mortality rate and duration of mechanical ventilation. Logistic regression demonstrated that nutritional adequacy modifies the association between the score and 28 day mortality (p = 0.01). This scoring algorithm may be helpful in identifying critically ill patients most likely to benefit from aggressive nutrition therapy.

577 citations

Journal ArticleDOI
TL;DR: The use of EN as opposed to PN results in an important decrease in the incidence of infectious complications in the critically ill and may be less costly.

540 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment ofAKI.
Abstract: tion’, implying that most patients ‘should’ receive a particular action. In contrast, level 2 guidelines are essentially ‘suggestions’ and are deemed to be ‘weak’ or discretionary, recognising that management decisions may vary in different clinical contexts. Each recommendation was further graded from A to D by the quality of evidence underpinning them, with grade A referring to a high quality of evidence whilst grade D recognised a ‘very low’ evidence base. The overall strength and quality of the supporting evidence is summarised in table 1 . The guidelines focused on 4 key domains: (1) AKI definition, (2) prevention and treatment of AKI, (3) contrastinduced AKI (CI-AKI) and (4) dialysis interventions for the treatment of AKI. The full summary of clinical practice statements is available at www.kdigo.org, but a few key recommendation statements will be highlighted here.

6,247 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care.
Abstract: D iabetes mellitus is a chronic illness that requires continuing medical care and ongoing patient self-management education and support to prevent acute complications and to reduce the risk of long-term complications. Diabetes care is complex and requires that many issues, beyond glycemic control, be addressed. A large body of evidence exists that supports a range of interventions to improve diabetes outcomes. These standards of care are intended to provide clinicians, patients, researchers, payers, and other interested individuals with the components of diabetes care, general treatment goals, and tools to evaluate the quality of care. While individual preferences, comorbidities, and other patient factors may require modification of goals, targets that are desirable for most patients with diabetes are provided. Specifically titled sections of the standards address children with diabetes, pregnant women, and people with prediabetes. These standards are not intended to preclude clinical judgment or more extensive evaluation and management of the patient by other specialists as needed. For more detailed information about management of diabetes, refer to references 1–3. The recommendations included are screening, diagnostic, and therapeutic actions that are known or believed to favorably affect health outcomes of patients with diabetes. A large number of these interventions have been shown to be cost-effective (4). A grading system (Table 1), developed by the American Diabetes Association (ADA) andmodeled after existingmethods, was utilized to clarify and codify the evidence that forms the basis for the recommendations. The level of evidence that supports each recommendation is listed after each recommendation using the letters A, B, C, or E. These standards of care are revised annually by the ADA’s multidisciplinary Professional Practice Committee, incorporating new evidence. For the current revision, committee members systematically searched Medline for human studies related to each subsection and published since 1 January 2010. Recommendations (bulleted at the beginning of each subsection and also listed in the “Executive Summary: Standards of Medical Care in Diabetesd2012”) were revised based on new evidence or, in some cases, to clarify the prior recommendation or match the strength of the wording to the strength of the evidence. A table linking the changes in recommendations to new evidence can be reviewed at http:// professional.diabetes.org/CPR_Search. aspx. Subsequently, as is the case for all Position Statements, the standards of care were reviewed and approved by the ExecutiveCommittee of ADA’s Board ofDirectors, which includes health care professionals, scientists, and lay people. Feedback from the larger clinical community was valuable for the 2012 revision of the standards. Readers who wish to comment on the “Standards of Medical Care in Diabetesd2012” are invited to do so at http://professional.diabetes.org/ CPR_Search.aspx. Members of the Professional Practice Committee disclose all potential financial conflicts of interest with industry. These disclosures were discussed at the onset of the standards revisionmeeting. Members of the committee, their employer, and their disclosed conflicts of interest are listed in the “Professional PracticeCommitteeMembers” table (see pg. S109). The AmericanDiabetes Association funds development of the standards and all its position statements out of its general revenues and does not utilize industry support for these purposes.

4,266 citations