scispace - formally typeset
Search or ask a question
Author

Ruslan Salakhutdinov

Other affiliations: Carnegie Learning, University of Toronto, Apple Inc.  ...read more
Bio: Ruslan Salakhutdinov is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Reinforcement learning & Artificial neural network. The author has an hindex of 107, co-authored 410 publications receiving 115921 citations. Previous affiliations of Ruslan Salakhutdinov include Carnegie Learning & University of Toronto.


Papers
More filters
02 Jul 2011
TL;DR: In this article, a hierarchical Bayesian model is proposed to transfer knowledge from previously learned categories to a novel category, in the form of a prior over category means and variances, which can discover how to group categories into meaningful super-categories that express different priors for new classes.
Abstract: We develop a hierarchical Bayesian model that learns categories from single training examples. The model transfers acquired knowledge from previously learned categories to a novel category, in the form of a prior over category means and variances. The model discovers how to group categories into meaningful super-categories that express different priors for new classes. Given a single example of a novel category, we can efficiently infer which super-category the novel category belongs to, and thereby estimate not only the new category's mean but also an appropriate similarity metric based on parameters inherited from the super-category. On MNIST and MSR Cambridge image datasets the model learns useful representations of novel categories based on just a single training example, and performs significantly better than simpler hierarchical Bayesian approaches. It can also discover new categories in a completely unsupervised fashion, given just one or a few examples.

111 citations

Posted Content
TL;DR: A Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents is introduced and it is shown that the model assigns better log probability to unseen data than the Replicated Softmax model.
Abstract: We introduce a Deep Boltzmann Machine model suitable for modeling and extracting latent semantic representations from a large unstructured collection of documents. We overcome the apparent difficulty of training a DBM with judicious parameter tying. This parameter tying enables an efficient pretraining algorithm and a state initialization scheme that aids inference. The model can be trained just as efficiently as a standard Restricted Boltzmann Machine. Our experiments show that the model assigns better log probability to unseen data than the Replicated Softmax model. Features extracted from our model outperform LDA, Replicated Softmax, and DocNADE models on document retrieval and document classification tasks.

108 citations

Posted Content
TL;DR: A two fold modification to GAN algorithm for learning to generate point clouds (PC-GAN), which combines ideas from hierarchical Bayesian modeling and implicit generative models by learning a hierarchical and interpretable sampling process and defines a generic framework that can incorporate many existing GAN algorithms.
Abstract: Generative Adversarial Networks (GAN) can achieve promising performance on learning complex data distributions on different types of data. In this paper, we first show a straightforward extension of existing GAN algorithm is not applicable to point clouds, because the constraint required for discriminators is undefined for set data. We propose a two fold modification to GAN algorithm for learning to generate point clouds (PC-GAN). First, we combine ideas from hierarchical Bayesian modeling and implicit generative models by learning a hierarchical and interpretable sampling process. A key component of our method is that we train a posterior inference network for the hidden variables. Second, instead of using only state-of-the-art Wasserstein GAN objective, we propose a sandwiching objective, which results in a tighter Wasserstein distance estimate than the commonly used dual form. Thereby, PC-GAN defines a generic framework that can incorporate many existing GAN algorithms. We validate our claims on ModelNet40 benchmark dataset. Using the distance between generated point clouds and true meshes as metric, we find that PC-GAN trained by the sandwiching objective achieves better results on test data than the existing methods. Moreover, as a byproduct, PC- GAN learns versatile latent representations of point clouds, which can achieve competitive performance with other unsupervised learning algorithms on object recognition task. Lastly, we also provide studies on generating unseen classes of objects and transforming image to point cloud, which demonstrates the compelling generalization capability and potentials of PC-GAN.

108 citations

Posted Content
TL;DR: On a large and diverse set of benchmark tasks, including text classification, distantly supervised entity extraction, and entity classification, the proposed semi-supervised learning framework shows improved performance over many of the existing models.
Abstract: We present a semi-supervised learning framework based on graph embeddings. Given a graph between instances, we train an embedding for each instance to jointly predict the class label and the neighborhood context in the graph. We develop both transductive and inductive variants of our method. In the transductive variant of our method, the class labels are determined by both the learned embeddings and input feature vectors, while in the inductive variant, the embeddings are defined as a parametric function of the feature vectors, so predictions can be made on instances not seen during training. On a large and diverse set of benchmark tasks, including text classification, distantly supervised entity extraction, and entity classification, we show improved performance over many of the existing models.

106 citations

Proceedings ArticleDOI
06 Jun 2021
TL;DR: This paper proposed the Hidden Unit BERT (HUBERT) model, which utilizes a cheap k-means clustering step to provide aligned target labels for pre-training of a BERT model.
Abstract: Compared to vision and language applications, self-supervised pre-training approaches for ASR are challenged by three unique problems: (1) There are multiple sound units in each input utterance, (2) With audio-only pre-training, there is no lexicon of sound units, and (3) Sound units have variable lengths with no explicit segmentation. In this paper, we propose the Hidden-Unit BERT (HUBERT) model which utilizes a cheap k-means clustering step to provide aligned target labels for pre-training of a BERT model. A key ingredient of our approach is applying the predictive loss over the masked regions only. This allows the pre-training stage to benefit from the consistency of the unsupervised teacher rather that its intrinsic quality. Starting with a simple k-means teacher of 100 cluster, and using two iterations of clustering, the HUBERT model matches the state-of-the-art wav2vec 2.0 performance on the ultra low-resource Libri-light 10h, 1h, 10min supervised subsets.

106 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations