scispace - formally typeset
Search or ask a question
Author

Ruslan Salakhutdinov

Other affiliations: Carnegie Learning, University of Toronto, Apple Inc.  ...read more
Bio: Ruslan Salakhutdinov is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Reinforcement learning & Artificial neural network. The author has an hindex of 107, co-authored 410 publications receiving 115921 citations. Previous affiliations of Ruslan Salakhutdinov include Carnegie Learning & University of Toronto.


Papers
More filters
Posted Content
TL;DR: In this paper, the authors derive a control algorithm from first principles that aims to visit states that have a high probability of leading to successful outcomes, given only examples of successful outcome states.
Abstract: In the standard Markov decision process formalism, users specify tasks by writing down a reward function. However, in many scenarios, the user is unable to describe the task in words or numbers, but can readily provide examples of what the world would look like if the task were solved. Motivated by this observation, we derive a control algorithm from first principles that aims to visit states that have a high probability of leading to successful outcomes, given only examples of successful outcome states. Prior work has approached similar problem settings in a two-stage process, first learning an auxiliary reward function and then optimizing this reward function using another reinforcement learning algorithm. In contrast, we derive a method based on recursive classification that eschews auxiliary reward functions and instead directly learns a value function from transitions and successful outcomes. Our method therefore requires fewer hyperparameters to tune and lines of code to debug. We show that our method satisfies a new data-driven Bellman equation, where examples take the place of the typical reward function term. Experiments show that our approach outperforms prior methods that learn explicit reward functions.

4 citations

Posted Content
TL;DR: This work proposes squared-loss mutual information (SMI) estimation using a small number of paired samples and the available unpaired ones, and introduces the least-square mutual information-Sinkhorn algorithm (LSMI-S sinkhorn) for efficient optimization.
Abstract: Estimating mutual information is an important machine learning and statistics problem. To estimate the mutual information from data, a common practice is preparing a set of paired samples. However, in some cases, it is difficult to obtain a large number of data pairs. To address this problem, we propose squared-loss mutual information (SMI) estimation using a small number of paired samples and the available unpaired ones. We first represent SMI through the density ratio function, where the expectation is approximated by the samples from marginals and its assignment parameters. The objective is formulated using the optimal transport problem and quadratic programming. Then, we introduce the least-square mutual information-Sinkhorn algorithm (LSMI-Sinkhorn) for efficient optimization. Through experiments, we first demonstrate that the proposed method can estimate the SMI without a large number of paired samples. We also evaluate and show the effectiveness of the proposed LSMI-Sinkhorn on various types of machine learning problems such as image matching and photo album summarization.

4 citations

Proceedings ArticleDOI
20 Dec 2022
TL;DR: This paper showed that cross-modal equivalence is equivalent to enforcing congruence between vision and language attention matrices under a change of basis provided by the crossmodal attention matrix.
Abstract: Despite recent progress towards scaling up multimodal vision-language models, these models are still known to struggle on compositional generalization benchmarks such as Winoground. We find that a critical component lacking from current vision-language models is relation-level alignment: the ability to match directional semantic relations in text (e.g., ‘mug in grass’) with spatial relationships in the image (e.g., the position of the mug relative to the grass). To tackle this problem, we show that relation alignment can be enforced by encouraging the language attention from ‘mug’ to ‘grass’ (capturing the semantic relation ‘in’) to match the visual attention from the mug to the grass (capturing the corresponding physical relation). Tokens and their corresponding objects are softly identified using a weighted mean of cross-modal attention. We prove that this notion of soft cross-modal equivalence is equivalent to enforcing congruence between vision and language attention matrices under a ‘change of basis’ provided by the cross-modal attention matrix. Intuitively, our approach projects visual attention into the language attention space to calculate its divergence from the actual language attention, and vice versa. We apply our Cross-modal Attention Congruence Regularization (CACR) loss to fine-tune UNITER and improve its Winoground Group score by 5.75 points.

4 citations

Posted Content
TL;DR: This article proposed a new framing of sentence ordering as a constraint solving problem and introduced a new technique to solve it, which showed that this new technique is better at capturing coherence in documents.
Abstract: Sentence ordering is the task of arranging the sentences of a given text in the correct order. Recent work using deep neural networks for this task has framed it as a sequence prediction problem. In this paper, we propose a new framing of this task as a constraint solving problem and introduce a new technique to solve it. Additionally, we propose a human evaluation for this task. The results on both automatic and human metrics across four different datasets show that this new technique is better at capturing coherence in documents.

4 citations

Proceedings ArticleDOI
21 Mar 2022
TL;DR: The PACS dataset as discussed by the authors contains 13,400 question-answer pairs, involving 1,377 unique physical commonsense questions and 1,526 videos, annotated for physical common sense attributes.
Abstract: In order for AI to be safely deployed in real-world scenarios such as hospitals, schools, and the workplace, it must be able to robustly reason about the physical world. Fundamental to this reasoning is physical common sense: understanding the physical properties and affordances of available objects, how they can be manipulated, and how they interact with other objects. Physical commonsense reasoning is fundamentally a multi-sensory task, since physical properties are manifested through multiple modalities - two of them being vision and acoustics. Our paper takes a step towards real-world physical commonsense reasoning by contributing PACS: the first audiovisual benchmark annotated for physical commonsense attributes. PACS contains 13,400 question-answer pairs, involving 1,377 unique physical commonsense questions and 1,526 videos. Our dataset provides new opportunities to advance the research field of physical reasoning by bringing audio as a core component of this multimodal problem. Using PACS, we evaluate multiple state-of-the-art models on our new challenging task. While some models show promising results (70% accuracy), they all fall short of human performance (95% accuracy). We conclude the paper by demonstrating the importance of multimodal reasoning and providing possible avenues for future research.

3 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations