scispace - formally typeset
Search or ask a question
Author

Ruslan Salakhutdinov

Other affiliations: Carnegie Learning, University of Toronto, Apple Inc.  ...read more
Bio: Ruslan Salakhutdinov is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Reinforcement learning & Artificial neural network. The author has an hindex of 107, co-authored 410 publications receiving 115921 citations. Previous affiliations of Ruslan Salakhutdinov include Carnegie Learning & University of Toronto.


Papers
More filters
Posted Content
TL;DR: A novel and theoretically principled algorithmic framework for planning with submodular objective functions, which recovers classical algorithms when applied to the two special cases mentioned above, and significantly outperforms baseline algorithms on synthetic environments and navigation tasks.
Abstract: We study planning with submodular objective functions, where instead of maximizing the cumulative reward, the goal is to maximize the objective value induced by a submodular function. Our framework subsumes standard planning and submodular maximization with cardinality constraints as special cases, and thus many practical applications can be naturally formulated within our framework. Based on the notion of multilinear extension, we propose a novel and theoretically principled algorithmic framework for planning with submodular objective functions, which recovers classical algorithms when applied to the two special cases mentioned above. Empirically, our approach significantly outperforms baseline algorithms on synthetic environments and navigation tasks.

1 citations

Posted Content
TL;DR: In this paper, the authors define, evaluate, and explore techniques for client-side privacy in speech recognition, where the goal is to preserve privacy on raw speech data before leaving the client's device.
Abstract: Existing approaches to ensuring privacy of user speech data primarily focus on server-side approaches. While improving server-side privacy reduces certain security concerns, users still do not retain control over whether privacy is ensured on the client-side. In this paper, we define, evaluate, and explore techniques for client-side privacy in speech recognition, where the goal is to preserve privacy on raw speech data before leaving the client's device. We first formalize several tradeoffs in ensuring client-side privacy between performance, compute requirements, and privacy. Using our tradeoff analysis, we perform a large-scale empirical study on existing approaches and find that they fall short on at least one metric. Our results call for more research in this crucial area as a step towards safer real-world deployment of speech recognition systems at scale across mobile devices.

1 citations

Journal ArticleDOI
TL;DR: In this paper, a simple BiLSTM model, when trained with cross-entropy loss, achieved state-of-the-art performance for text classification task on several benchmark datasets, including ACL-IMDB sentiment analysis and AG-News topic classification.
Abstract: In this paper, we study bidirectional LSTM network for the task of text classification using both supervised and semi-supervised approaches. Several prior works have suggested that either complex pretraining schemes using unsupervised methods such as language modeling (Dai and Le 2015; Miyato, Dai, and Goodfellow 2016) or complicated models (Johnson and Zhang 2017) are necessary to achieve a high classification accuracy. However, we develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results compared with more complex approaches. Furthermore, in addition to cross-entropy loss, by using a combination of entropy minimization, adversarial, and virtual adversarial losses for both labeled and unlabeled data, we report state-of-the-art results for text classification task on several benchmark datasets. In particular, on the ACL-IMDB sentiment analysis and AG-News topic classification datasets, our method outperforms current approaches by a substantial margin. We also show the generality of the mixed objective function by improving the performance on relation extraction task.

1 citations

Posted Content
TL;DR: A novel Generative Markov Network (GMN) is introduced which is used to extract the order of data instances automatically and is proposed to use neural networks as a soft lookup table for approximating the possibly huge, but discrete transition matrix.
Abstract: The assumption that data samples are independently identically distributed is the backbone of many learning algorithms. Nevertheless, datasets often exhibit rich structures in practice, and we argue that there exist some unknown orders within the data instances. Aiming to find such orders, we introduce a novel Generative Markov Network (GMN) which we use to extract the order of data instances automatically. Specifically, we assume that the instances are sampled from a Markov chain. Our goal is to learn the transitional operator of the chain as well as the generation order by maximizing the generation probability under all possible data permutations. One of our key ideas is to use neural networks as a soft lookup table for approximating the possibly huge, but discrete transition matrix. This strategy allows us to amortize the space complexity with a single model and make the transitional operator generalizable to unseen instances. To ensure the learned Markov chain is ergodic, we propose a greedy batch-wise permutation scheme that allows fast training. Empirically, we evaluate the learned Markov chain by showing that GMNs are able to discover orders among data instances and also perform comparably well to state-of-the-art methods on the one-shot recognition benchmark task.

1 citations

Posted Content
TL;DR: In this article, the authors combine information bottlenecks, model-based RL and bits-back coding into a simple and theoretically-justified algorithm to jointly optimize a latent space model and policy to be self-consistent, such that the policy avoids states where the model is inaccurate.
Abstract: Many of the challenges facing today's reinforcement learning (RL) algorithms, such as robustness, generalization, transfer, and computational efficiency are closely related to compression. Prior work has convincingly argued why minimizing information is useful in the supervised learning setting, but standard RL algorithms lack an explicit mechanism for compression. The RL setting is unique because (1) its sequential nature allows an agent to use past information to avoid looking at future observations and (2) the agent can optimize its behavior to prefer states where decision making requires few bits. We take advantage of these properties to propose a method (RPC) for learning simple policies. This method brings together ideas from information bottlenecks, model-based RL, and bits-back coding into a simple and theoretically-justified algorithm. Our method jointly optimizes a latent-space model and policy to be self-consistent, such that the policy avoids states where the model is inaccurate. We demonstrate that our method achieves much tighter compression than prior methods, achieving up to 5x higher reward than a standard information bottleneck. We also demonstrate that our method learns policies that are more robust and generalize better to new tasks.

1 citations


Cited by
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
01 Jan 2015
TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Abstract: We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.

111,197 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations