scispace - formally typeset
Search or ask a question
Author

Russell A. Chipman

Bio: Russell A. Chipman is an academic researcher from University of Arizona. The author has contributed to research in topics: Polarization (waves) & Mueller calculus. The author has an hindex of 39, co-authored 289 publications receiving 6147 citations. Previous affiliations of Russell A. Chipman include University of Alabama in Huntsville & University of Alabama.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors decompose a Mueller matrix into a sequence of three matrix factors: a diattenuator, followed by a retarder, then followed by depolarizer.
Abstract: We present an algorithm that decomposes a Mueller matrix into a sequence of three matrix factors: a diattenuator, followed by a retarder, then followed by a depolarizer. Those factors are unique except for singular Mueller matrices. Based on this decomposition, the diattenuation and the retardance of a Mueller matrix can be defined and computed. Thus this algorithm is useful for performing data reduction upon experimentally determined Mueller matrices.

1,220 citations

Journal ArticleDOI
TL;DR: In this paper, the classification of polarization properties of polarization elements is studied to derive data-reduction equations for extracting the diattenuation, retardance, and other polarization properties from their Jones matrices.
Abstract: The classification of polarization properties of polarization elements is studied to derive data-reduction equations for extracting the diattenuation, retardance, and other polarization properties from their Jones matrices. Polarization elements, and Jones matrices as well, are divided into two classes: homogeneous, with orthogonal eigenpolarizations, and inhomogeneous, with nonorthogonal eigenpolarizations. The basic polarization properties, diattenuation and retardance, of homogeneous polarization elements are straightforward and well known; these elements are characterized by their eigenvalues and eigenpolarizations. Polarization properties of inhomogeneous polarization elements are not so evident. By applying polar decomposition, the definitions of diattenuation and retardance are generalized to inhomogeneous polarization elements, providing an understanding of their polarization characteristics. Furthermore, an inhomogeneity parameter is introduced to describe the degree of inhomogeneity in a polarization element. These results are then adapted to degenerate polarization elements, which have only one linearly independent eigenpolarization.

261 citations

Journal ArticleDOI
TL;DR: In this article, an error analysis of a Mueller matrix polarimeter with dual rotating retarders is presented, where errors in orientational alignment of three of the four polarization elements are considered.
Abstract: An error analysis of a Mueller matrix polarimeter with dual rotating retarders is presented. Errors in orientational alignment of three of the four polarization elements are considered. Errors that are due to nonideal retardation elements are also included in the analysis. Compensation for imperfect retardation elements is possible with the equations derived, and the equations permit a calibration of the polarimeter for azimuthal alignment of polarization elements. An analytical treatment is given and is followed by numerical examples. The latter should prove useful in the laboratory in comparing precalibrated experimental results with theoretical predictions.

204 citations

Journal ArticleDOI
TL;DR: The Mueller matrix imaging polarimeter (MMI polarimeter) as mentioned in this paper was designed to measure the polarization properties of a set of ray paths through a sample, which can be configured to make a wide variety of polarimetric measurements of optical systems and samples.
Abstract: The design and operation of a Mueller matrix imaging polarimeter is presented. The instrument is configurable to make a wide variety of polarimetric measurements of optical systems and samples. In one configuration, it measures the polarization properties of a set of ray paths through a sample. The sample may comprise a single element, such as a lens, polarizer, retarder, spatial light modulator, or beamsplitter, or an entire optical system containing many elements. In a second configuration, it measures an optical system's point spread matrix, a Mueller matrix relating the polarization state of a point object to the distribution of intensity and polarization across the image. The instrument is described and a number of example measurements are provided that demonstrate the Mueller matrix imaging polarimeter's unique measurement capability.

188 citations

Journal ArticleDOI
TL;DR: In this article, the authors consider methods suitable for analyzing systems for which the assumption of uniform amplitude and constant polarization state is not valid, and define the basic classes of polarization phenomena and a review of the Jones calculus are included to form a basis for the discussion.
Abstract: For most optical systems it is typically assumed that the transmitted wavefront has uniform for Gaussian) amplitude and constant polarization state. This is the default assumption of geometrical optics. This paper considers methods suitable for analyzing systems for which this assumption is not valid. Such methods of polarization analysis include polarization ray tracing and polarization aberration theory. Definitions of the basic classes of polarization phenomena and a review of the Jones calculus are included to form a basis for the discussion.

142 citations


Cited by
More filters
Journal ArticleDOI
Qiwen Zhan1
TL;DR: An overview of the recent developments in the field of cylindrical vector beams is provided in this paper, where the authors also discuss the potential of using these beams in other fields.
Abstract: An overview of the recent developments in the field of cylindrical vector beams is provided. As one class of spatially variant polarization, cylindrical vector beams are the axially symmetric beam solution to the full vector electromagnetic wave equation. These beams can be generated via different active and passive methods. Techniques for manipulating these beams while maintaining the polarization symmetry have also been developed. Their special polarization symmetry gives rise to unique high-numerical-aperture focusing properties that find important applications in nanoscale optical imaging and manipulation. The prospects for cylindrical vector beams and their applications in other fields are also briefly discussed.

2,361 citations

Journal ArticleDOI
TL;DR: The Ozone Monitoring Instrument is a ultraviolet/visible nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km and will enable detection of air pollution on urban scale resolution.
Abstract: The Ozone Monitoring Instrument (OMI) flies on the National Aeronautics and Space Administration's Earth Observing System Aura satellite launched in July 2004. OMI is a ultraviolet/visible (UV/VIS) nadir solar backscatter spectrometer, which provides nearly global coverage in one day with a spatial resolution of 13 km/spl times/24 km. Trace gases measured include O/sub 3/, NO/sub 2/, SO/sub 2/, HCHO, BrO, and OClO. In addition, OMI will measure aerosol characteristics, cloud top heights, and UV irradiance at the surface. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage will be a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI's high spatial resolution is unprecedented and will enable detection of air pollution on urban scale resolution. In this paper, the instrument and its performance will be discussed.

1,644 citations

Book
01 Dec 1988
TL;DR: In this paper, the spectral energy distribution of the reflected light from an object made of a specific real material is obtained and a procedure for accurately reproducing the color associated with the spectrum is discussed.
Abstract: This paper presents a new reflectance model for rendering computer synthesized images. The model accounts for the relative brightness of different materials and light sources in the same scene. It describes the directional distribution of the reflected light and a color shift that occurs as the reflectance changes with incidence angle. The paper presents a method for obtaining the spectral energy distribution of the light reflected from an object made of a specific real material and discusses a procedure for accurately reproducing the color associated with the spectral energy distribution. The model is applied to the simulation of a metal and a plastic.

1,401 citations

Journal ArticleDOI
TL;DR: The foundations of passive imaging polarimetry, the phenomenological reasons for designing a polarimetric sensor, and the primary architectures that have been exploited for developing imaging polarimeters are discussed.
Abstract: Imaging polarimetry has emerged over the past three decades as a powerful tool to enhance the information available in a variety of remote sensing applications. We discuss the foundations of passive imaging polarimetry, the phenomenological reasons for designing a polarimetric sensor, and the primary architectures that have been exploited for developing imaging polarimeters. Considerations on imaging polarimeters such as calibration, optimization, and error performance are also discussed. We review many important sources and examples from the scientific literature.

1,374 citations

Journal Article
J. Walkup1
TL;DR: Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.
Abstract: Course Description This is an advanced course in which we explore the field of Statistical Optics. Topics covered include such subjects as the statistical properties of natural (thermal) and laser light, spatial and temporal coherence, effects of partial coherence on optical imaging instruments, effects on imaging due to randomly inhomogeneous media, and a statistical treatment of the detection of light. Development of this more comprehensive model of the behavior of light draws upon the use of tools traditionally available to the electrical engineer, such as linear system theory and the theory of stochastic processes.

1,364 citations