scispace - formally typeset
Search or ask a question
Author

Rustam Aminov

Bio: Rustam Aminov is an academic researcher from University of Aberdeen. The author has contributed to research in topics: Antibiotic resistance & Familial Mediterranean fever. The author has an hindex of 42, co-authored 97 publications receiving 10297 citations. Previous affiliations of Rustam Aminov include Kazan Federal University & Bashkir State Agrarian University.


Papers
More filters
Journal ArticleDOI
TL;DR: This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections.
Abstract: This article gives a very brief overview of the antibiotic era, beginning from the discovery of first antibiotics until the present day situation, which is marred by the emergence of hard-to-treat multiple antibiotic-resistant infections. The ways of responding to the antibiotic resistance challenges such as the development of novel strategies in the search for new antimicrobials, designing more effective preventive measures and, importantly, better understanding the ecology of antibiotics and antibiotic resistance are discussed. The expansion of conceptual frameworks based on recent developments in the field of antimicrobials, antibiotic resistance, and chemotherapy is also discussed.

1,132 citations

Journal ArticleDOI
TL;DR: It is demonstrated that tet genes occur in the environment as a direct result of agriculture and suggested that groundwater may be a potential source of antibiotic resistance in the food chain.
Abstract: In this study, we used PCR typing methods to assess the presence of tetracycline resistance determinants conferring ribosomal protection in waste lagoons and in groundwater underlying two swine farms. All eight classes of genes encoding this mechanism of resistance [tet(O), tet(Q), tet(W), tet(M), tetB(P), tet(S), tet(T), and otrA] were found in total DNA extracted from water of two lagoons. These determinants were found to be seeping into the underlying groundwater and could be detected as far as 250 m downstream from the lagoons. The identities and origin of these genes in groundwater were confirmed by PCR-denaturing gradient gel electrophoresis and sequence analyses. Tetracycline-resistant bacterial isolates from groundwater harbored the tet(M) gene, which was not predominant in the environmental samples and was identical to tet(M) from the lagoons. The presence of this gene in some typical soil inhabitants suggests that the vector of antibiotic resistance gene dissemination is not limited to strains of gastrointestinal origin carrying the gene but can be mobilized into the indigenous soil microbiota. This study demonstrated that tet genes occur in the environment as a direct result of agriculture and suggested that groundwater may be a potential source of antibiotic resistance in the food chain.

766 citations

Journal ArticleDOI
TL;DR: The efficiency of antibiotics is compromised by a growing number of antibiotic-resistant pathogens and the magnitude of the problem recently prompted a number of international and national bodies to take actions to protect the public.
Abstract: Antibiotics represent one of the most successful forms of therapy in medicine. But the efficiency of antibiotics is compromised by a growing number of antibiotic-resistant pathogens. Antibiotic resistance, which is implicated in elevated morbidity and mortality rates as well as in the increased treatment costs, is considered to be one of the major global public health threats (www.who.int/drugresistance/en/) and the magnitude of the problem recently prompted a number of international and national bodies to take actions to protect the public (http://

714 citations

Journal ArticleDOI
TL;DR: Findings are discussed that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.
Abstract: Antibiotics are used in animal livestock production for therapeutic treatment of disease and at subtherapeutic levels for growth promotion and improvement of feed efficiency. It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste. Antibiotic resistance selection occurs among gastrointestinal bacteria, which are also excreted in manure and stored in waste holding systems. Land application of animal waste is a common disposal method used in the United States and is a means for environmental entry of both antibiotics and genetic resistance determinants. Concerns for bacterial resistance gene selection and dissemination of resistance genes have prompted interest about the concentrations and biological activity of drug residues and break-down metabolites, and their fate and transport. Fecal bacteria can survive for weeks to months in the environment, depending on species and temperature, however, genetic elements can persist regardless of cell viability. Phylogenetic analyses indicate antibiotic resistance genes have evolved, although some genes have been maintained in bacteria before the modern antibiotic era. Quantitative measurements of drug residues and levels of resistance genes are needed, in addition to understanding the environmental mechanisms of genetic selection, gene acquisition, and the spatiotemporal dynamics of these resistance genes and their bacterial hosts. This review article discusses an accumulation of findings that address aspects of the fate, transport, and persistence of antibiotics and antibiotic resistance genes in natural environments, with emphasis on mechanisms pertaining to soil environments following land application of animal waste effluent.

701 citations

Journal ArticleDOI
TL;DR: The real-time PCR technique uncovered differential amplification of rumen bacterial templates with the set of universal bacterial primers, which may explain why some predominant rumen bacteria have not been detected in PCR-generated 16S ribosomal DNA libraries.
Abstract: A set of PCR primers was designed and validated for specific detection and quantification of Prevotella ruminicola, Prevotella albensis, Prevotella bryantii, Fibrobacter succinogenes, Selenomonas ruminantium-Mitsuokella multiacida, Streptococcus bovis, Ruminococcus flavefaciens, Ruminobacter amylophilus, Eubacterium ruminantium, Treponema bryantii, Succinivibrio dextrinosolvens, and Anaerovibrio lipolytica. By using these primers and the real-time PCR technique, the corresponding species in the rumens of cows for which the diet was switched from hay to grain were quantitatively monitored. The dynamics of two fibrolytic bacteria, F. succinogenes and R. flavefaciens, were in agreement with those of earlier, culture-based experiments. The quantity of F. succinogenes DNA, predominant in animals on the hay diet, fell 20-fold on the third day of the switch to a grain diet and further declined on day 28, with a 57-fold reduction in DNA. The R. flavefaciens DNA concentration on day 3 declined to approximately 10% of its initial value in animals on the hay diet and remained at this level on day 28. During the transition period (day 3), the quantities of two ruminal prevotella DNAs increased considerably: that of P. ruminicola increased 7-fold and that of P. bryantii increased 263-fold. On day 28, the quantity of P. ruminicola DNA decreased 3-fold, while P. bryantii DNA was still elevated 10-fold in comparison with the level found in animals on the initial hay diet. The DNA specific for another xylanolytic bacterium, E. ruminantium, dropped 14-fold during the diet switch and was maintained at this level on day 28. The concentration of a rumen spirochete, T. bryantii, decreased less profoundly and stabilized with a sevenfold decline by day 28. The variations in A. lipolytica DNA were not statistically significant. After an initial slight increase in S. dextrinosolvens DNA on day 3, this DNA was not detected at the end of the experiment. S. bovis DNA displayed a 67-fold increase during the transition period on day 3. However, on day 28, it actually declined in comparison with the level in animals on the hay ration. The amount of S. ruminantium-M. multiacida DNA also increased eightfold following the diet switch, but stabilized with only a twofold increase on day 28. The real-time PCR technique also uncovered differential amplification of rumen bacterial templates with the set of universal bacterial primers. This observation may explain why some predominant rumen bacteria have not been detected in PCR-generated 16S ribosomal DNA libraries.

656 citations


Cited by
More filters
Journal ArticleDOI
23 Jan 2014-Nature
TL;DR: Increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease.
Abstract: Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.

7,032 citations

Journal ArticleDOI
TL;DR: A review of antibiotic resistance development over the past half-century can be found in this article, with the oft-restated conclusion that it is time to act and to restore the therapeutic applications of antibiotics.
Abstract: Antibiotics have always been considered one of the wonder discoveries of the 20th century. This is true, but the real wonder is the rise of antibiotic resistance in hospitals, communities, and the environment concomitant with their use. The extraordinary genetic capacities of microbes have benefitted from man's overuse of antibiotics to exploit every source of resistance genes and every means of horizontal gene transmission to develop multiple mechanisms of resistance for each and every antibiotic introduced into practice clinically, agriculturally, or otherwise. This review presents the salient aspects of antibiotic resistance development over the past half-century, with the oft-restated conclusion that it is time to act. To achieve complete restitution of therapeutic applications of antibiotics, there is a need for more information on the role of environmental microbiomes in the rise of antibiotic resistance. In particular, creative approaches to the discovery of novel antibiotics and their expedited and controlled introduction to therapy are obligatory.

4,364 citations

Journal ArticleDOI
TL;DR: Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.
Abstract: The two primary human inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are idiopathic relapsing disorders characterized by chronic inflammation of the intestinal tract. Although several lines of reasoning suggest that gastrointestinal (GI) microbes influence inflammatory bowel disease (IBD) pathogenesis, the types of microbes involved have not been adequately described. Here we report the results of a culture-independent rRNA sequence analysis of GI tissue samples obtained from CD and UC patients, as well as non-IBD controls. Specimens were obtained through surgery from a variety of intestinal sites and included both pathologically normal and abnormal states. Our results provide comprehensive molecular-based analysis of the microbiota of the human small intestine. Comparison of clone libraries reveals statistically significant differences between the microbiotas of CD and UC patients and those of non-IBD controls. Significantly, our results indicate that a subset of CD and UC samples contained abnormal GI microbiotas, characterized by depletion of commensal bacteria, notably members of the phyla Firmicutes and Bacteroidetes. Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.

3,967 citations

Journal ArticleDOI
TL;DR: The global situation of antibiotic resistance, its major causes and consequences, and key areas in which action is urgently needed are described and identified.
Abstract: The causes of antibiotic resistance are complex and include human behaviour at many levels of society; the consequences affect everybody in the world. Similarities with climate change are evident. Many efforts have been made to describe the many different facets of antibiotic resistance and the interventions needed to meet the challenge. However, coordinated action is largely absent, especially at the political level, both nationally and internationally. Antibiotics paved the way for unprecedented medical and societal developments, and are today indispensible in all health systems. Achievements in modern medicine, such as major surgery, organ transplantation, treatment of preterm babies, and cancer chemotherapy, which we today take for granted, would not be possible without access to effective treatment for bacterial infections. Within just a few years, we might be faced with dire setbacks, medically, socially, and economically, unless real and unprecedented global coordinated actions are immediately taken. Here, we describe the global situation of antibiotic resistance, its major causes and consequences, and identify key areas in which action is urgently needed.

3,181 citations

Journal ArticleDOI
TL;DR: The advances in modeling and analysis of gut microbiota will further the authors' knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.
Abstract: Gut microbiota is an assortment of microorganisms inhabiting the length and width of the mammalian gastrointestinal tract. The composition of this microbial community is host specific, evolving throughout an individual's lifetime and susceptible to both exogenous and endogenous modifications. Recent renewed interest in the structure and function of this "organ" has illuminated its central position in health and disease. The microbiota is intimately involved in numerous aspects of normal host physiology, from nutritional status to behavior and stress response. Additionally, they can be a central or a contributing cause of many diseases, affecting both near and far organ systems. The overall balance in the composition of the gut microbial community, as well as the presence or absence of key species capable of effecting specific responses, is important in ensuring homeostasis or lack thereof at the intestinal mucosa and beyond. The mechanisms through which microbiota exerts its beneficial or detrimental influences remain largely undefined, but include elaboration of signaling molecules and recognition of bacterial epitopes by both intestinal epithelial and mucosal immune cells. The advances in modeling and analysis of gut microbiota will further our knowledge of their role in health and disease, allowing customization of existing and future therapeutic and prophylactic modalities.

3,077 citations