scispace - formally typeset
Search or ask a question
Author

Ryan Balili

Other affiliations: University of Cambridge
Bio: Ryan Balili is an academic researcher from University of Pittsburgh. The author has contributed to research in topics: Polariton & Photon. The author has an hindex of 13, co-authored 17 publications receiving 1606 citations. Previous affiliations of Ryan Balili include University of Cambridge.

Papers
More filters
Journal ArticleDOI
18 May 2007-Science
TL;DR: Polaritons are created in a harmonic potential trap analogous to atoms in optical traps and observe a number of signatures of Bose-Einstein condensation: spectral and spatial narrowing, a peak at zero momentum in the momentum distribution, first-order coherence, and spontaneous linear polarization of the light emission.
Abstract: We have created polaritons in a harmonic potential trap analogous to atoms in optical traps. The trap can be loaded by creating polaritons 50 micrometers from its center that are allowed to drift into the trap. When the density of polaritons exceeds a critical threshold, we observe a number of signatures of Bose-Einstein condensation: spectral and spatial narrowing, a peak at zero momentum in the momentum distribution, first-order coherence, and spontaneous linear polarization of the light emission. The polaritons, which are eigenstates of the light-matter system in a microcavity, remain in the strong coupling regime while going through this dynamical phase transition.

1,017 citations

Journal ArticleDOI
TL;DR: Lateral diffusion measurements of excitons at low temperature in double quantum wells of various widths are reported, establishing that the transport occurs by exciton motion.
Abstract: In this Letter we report on lateral diffusion measurements of excitons at low temperature in double quantum wells of various widths. The structure is designed so that excitons live up to 30 micros and diffuse up to 500 microm. Particular attention is given to establishing that the transport occurs by exciton motion. The deduced exciton diffusion coefficients have a very strong well width dependence, and obey the same power law as the diffusion coefficient for electrons.

106 citations

Journal ArticleDOI
TL;DR: The nonlinear spin dynamics offers an alternative route to switching, allowing us to realize an electrical spin-switch exhibiting ultralow switching energies below 0.5 fJ, laying the foundation for development of devices based on the electro-optical control of coherent spin ensembles on a chip.
Abstract: The spin-switching of optically induced polariton condensates can be externally controlled with an electric field, with switching energies below 0.5 fJ. Practical challenges to extrapolating Moore’s law favour alternatives to electrons as information carriers. Two promising candidates are spin-based and all-optical architectures, the former offering lower energy consumption1, the latter superior signal transfer down to the level of chip-interconnects2. Polaritons—spinor quasi-particles composed of semiconductor excitons and microcavity photons—directly couple exciton spins and photon polarizations, combining the advantages of both approaches. However, their implementation for spintronics has been hindered because polariton spins can be manipulated only optically3,4 or by strong magnetic fields5,6. Here we use an external electric field to directly control the spin of a polariton condensate, bias-tuning the emission polarization. The nonlinear spin dynamics offers an alternative route to switching, allowing us to realize an electrical spin-switch exhibiting ultralow switching energies below 0.5 fJ. Our results lay the foundation for development of devices based on the electro-optical control of coherent spin ensembles on a chip.

99 citations

Journal ArticleDOI
TL;DR: In this article, the authors extended the lifetime of exciton polaritons from 10 to 100 picoseconds and observed a number of dramatic new effects, including a new and dynamic coherent state of spatially localized polariton at high densities.
Abstract: Exciton polaritons are essentially photons ``dressed'' by and interacting via their interaction with excitons in a semiconductor. As bosons, they exhibit Bose-Einstein condensation, in which they self-organize into a coherent state. Scientists have now extended their lifetime from 10 to 100 picoseconds and have observed a number of dramatic new effects, including a new and dynamic coherent state of spatially localized polaritons at high densities.

99 citations

Journal ArticleDOI
TL;DR: The ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics is demonstrated.
Abstract: Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose–Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg–Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics.

89 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
Abstract: This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In the presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically nonequilibrium nature. A rich variety of recently observed photon hydrodynamical effects is presented, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While the review is mostly focused on a specific class of semiconductor systems that have been extensively studied in recent years (planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of the article is devoted to a review of the future perspectives in the direction of strongly correlated photon gases and of artificial gauge fields for photons. In particular, several mechanisms to obtain efficient photon blockade are presented, together with their application to the generation of novel quantum phases.

1,469 citations

Journal ArticleDOI
TL;DR: In this article, the authors reviewed recent experiments and corresponding theoretical pictures based on the Gross-Pitaevskii equations and the Boltzmann kinetic simulations for a finite-size BEC of polaritons.
Abstract: In the past decade, a two-dimensional matter-light system called the microcavity exciton-polariton has emerged as a new promising candidate of Bose-Einstein condensation BEC in solids. Many pieces of important evidence of polariton BEC have been established recently in GaAs and CdTe microcavities at the liquid helium temperature, opening a door to rich many-body physics inaccessible in experiments before. Technological progress also made polariton BEC at room temperatures promising. In parallel with experimental progresses, theoretical frameworks and numerical simulations are developed, and our understanding of the system has greatly advanced. In this article, recent experiments and corresponding theoretical pictures based on the Gross-Pitaevskii equations and the Boltzmann kinetic simulations for a finite-size BEC of polaritons are reviewed.

1,110 citations

Journal ArticleDOI
18 May 2007-Science
TL;DR: Polaritons are created in a harmonic potential trap analogous to atoms in optical traps and observe a number of signatures of Bose-Einstein condensation: spectral and spatial narrowing, a peak at zero momentum in the momentum distribution, first-order coherence, and spontaneous linear polarization of the light emission.
Abstract: We have created polaritons in a harmonic potential trap analogous to atoms in optical traps. The trap can be loaded by creating polaritons 50 micrometers from its center that are allowed to drift into the trap. When the density of polaritons exceeds a critical threshold, we observe a number of signatures of Bose-Einstein condensation: spectral and spatial narrowing, a peak at zero momentum in the momentum distribution, first-order coherence, and spontaneous linear polarization of the light emission. The polaritons, which are eigenstates of the light-matter system in a microcavity, remain in the strong coupling regime while going through this dynamical phase transition.

1,017 citations

Journal ArticleDOI
TL;DR: In this article, the existence of superfluidity in polaritons is investigated in terms of the Landau criterion and manifests itself as the suppression of scattering from defects when the flow velocity is slower than the speed of sound in the fluid.
Abstract: Similar to atoms in cold gases, exciton–polaritons in semiconductor microcavities can undergo Bose–Einstein condensation. A striking consequence of the appearance of macroscopic coherence in these systems is superfluidity. Now, clear evidence for such behaviour has been found in an exciton–polariton condensate. Superfluidity, the ability of a quantum fluid to flow without friction, is one of the most spectacular phenomena occurring in degenerate gases of interacting bosons. Since its first discovery in liquid helium-4 (refs 1, 2), superfluidity has been observed in quite different systems, and recent experiments with ultracold trapped atoms have explored the subtle links between superfluidity and Bose–Einstein condensation3,4,5. In solid-state systems, it has been anticipated that exciton–polaritons in semiconductor microcavities should behave as an unusual quantum fluid6,7,8, with unique properties stemming from its intrinsically non-equilibrium nature. This has stimulated the quest for an experimental demonstration of superfluidity effects in polariton systems9,10,11,12,13. Here, we report clear evidence for superfluid motion of polaritons. Superfluidity is investigated in terms of the Landau criterion and manifests itself as the suppression of scattering from defects when the flow velocity is slower than the speed of sound in the fluid. Moreover, a Cerenkov-like wake pattern is observed when the flow velocity exceeds the speed of sound. The experimental findings are in quantitative agreement with predictions based on a generalized Gross–Pitaevskii theory12,13, and establish microcavity polaritons as a system for exploring the rich physics of non-equilibrium quantum fluids.

820 citations

Journal ArticleDOI
25 Nov 2010-Nature
TL;DR: The observation of a Bose–Einstein condensate of photons is reported, formally equivalent to a two-dimensional gas of trapped, massive bosons, in a dye-filled optical microcavity which acts as a ‘white-wall’ box.
Abstract: Bose–Einstein condensation has been observed in several physical systems, but is not predicted to occur for blackbody radiation such as photons. However, it becomes theoretically possible in the presence of thermalization processes that conserve photon number. Martin Weitz and colleagues have now realized such conditions experimentally, observing Bose–Einstein condensation of photons in a dye-filled optical microcavity. The effect is of interest for fundamental studies and may lead to new coherent ultraviolet sources. Bose–Einstein condensation has been observed in several physical systems, but is not predicted to occur for blackbody radiation such as photons. However, it becomes theoretically possible in the presence of thermalization processes that conserve photon number. These authors experimentally realise such conditions, observing Bose–Einstein condensation of photons in a dye-filled optical microcavity. The effect is of interest for fundamental studies and may lead to new coherent ultraviolet sources. Bose–Einstein condensation (BEC)—the macroscopic ground-state accumulation of particles with integer spin (bosons) at low temperature and high density—has been observed in several physical systems1,2,3,4,5,6,7,8,9, including cold atomic gases and solid-state quasiparticles. However, the most omnipresent Bose gas, blackbody radiation (radiation in thermal equilibrium with the cavity walls) does not show this phase transition. In such systems photons have a vanishing chemical potential, meaning that their number is not conserved when the temperature of the photon gas is varied10; at low temperatures, photons disappear in the cavity walls instead of occupying the cavity ground state. Theoretical works have considered thermalization processes that conserve photon number (a prerequisite for BEC), involving Compton scattering with a gas of thermal electrons11 or photon–photon scattering in a nonlinear resonator configuration12,13. Number-conserving thermalization was experimentally observed14 for a two-dimensional photon gas in a dye-filled optical microcavity, which acts as a ‘white-wall’ box. Here we report the observation of a Bose–Einstein condensate of photons in this system. The cavity mirrors provide both a confining potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped, massive bosons. The photons thermalize to the temperature of the dye solution (room temperature) by multiple scattering with the dye molecules. Upon increasing the photon density, we observe the following BEC signatures: the photon energies have a Bose–Einstein distribution with a massively populated ground-state mode on top of a broad thermal wing; the phase transition occurs at the expected photon density and exhibits the predicted dependence on cavity geometry; and the ground-state mode emerges even for a spatially displaced pump spot. The prospects of the observed effects include studies of extremely weakly interacting low-dimensional Bose gases9 and new coherent ultraviolet sources15.

666 citations