scispace - formally typeset
Search or ask a question
Author

Ryan O. Milligan

Bio: Ryan O. Milligan is an academic researcher from Queen's University Belfast. The author has contributed to research in topics: Solar flare & Flare. The author has an hindex of 31, co-authored 78 publications receiving 3752 citations. Previous affiliations of Ryan O. Milligan include The Catholic University of America & Goddard Space Flight Center.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this paper, where the focus is on different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections We also discuss flare soft X-ray spectroscopy and the energetics of the process The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations

774 citations

Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this article, with the emphasis on the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.

558 citations

Journal ArticleDOI
TL;DR: In this article, a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with hard X-ray (HXR) observations from Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) was presented.
Abstract: This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with hard X-ray (HXR) observations from Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T = 0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v up) was found to scale with temperature as v up (km s–1) ≈ 8-18T(MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s–1, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v down (km s–1) ≈ 60-17T (MK) and was interpreted as the downward-moving "plug" characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be 5 × 1010 erg cm–2 s–1, consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.

239 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with HXR observations from RHESSI is presented.
Abstract: This paper presents a detailed study of chromospheric evaporation using the EUV Imaging Spectrometer (EIS) onboard Hinode in conjunction with HXR observations from RHESSI. The advanced capabilities of EIS were used to measure Doppler shifts in 15 emission lines covering the temperature range T=0.05-16 MK during the impulsive phase of a C-class flare on 2007 December 14. Blueshifts indicative of the evaporated material were observed in six emission lines from Fe XIV-XXIV (2-16 MK). Upflow velocity (v_up) was found to scale with temperature as v_up (km s^-1)~8-18 T (MK). Although the hottest emission lines, Fe XXIII and Fe XXIV, exhibited upflows of >200 km s^-1, their line profiles were found to be dominated by a stationary component in contrast to the predictions of the standard flare model. Emission from O VI-Fe XIII lines (0.5-1.5 MK) was found to be redshifted by v_down (km s^-1)~60-17 T (MK) and was interpreted as the downward-moving `plug' characteristic of explosive evaporation. These downflows occur at temperatures significantly higher than previously expected. Both upflows and downflows were spatially and temporally correlated with HXR emission observed by RHESSI that provided the properties of the electron beam deemed to be the driver of the evaporation. The energy flux of the electron beam was found to be >5x10^10 ergs cm^-2 s^-1 consistent with the value required to drive explosive chromospheric evaporation from hydrodynamic simulations.

202 citations

Journal ArticleDOI
TL;DR: In this article, the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory were used to observe explosive evaporation within a hard X-ray emitting region.
Abstract: Simultaneous observations of explosive chromospheric evaporation are presented using data from the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) and the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory. For the first time, cospatial imaging and spectroscopy have been used to observe explosive evaporation within a hard X-ray emitting region. RHESSI X-ray images and spectra were used to determine the flux of nonthermal electrons accelerated during the impulsive phase of an M2.2 flare. When we assumed a thick-target model, the injected electron spectrum was found to have a spectral index of ~7.3, a low-energy cutoff of ~20 keV, and a resulting flux of ≥4 × 1010 ergs cm-2 s-1. The dynamic response of the atmosphere was determined using CDS spectra; we found a mean upflow velocity of 230 ± 38 km s-1 in Fe XIX (592.23 A) and associated downflows of 36 ± 16 and 43 ± 22 km s-1 at chromospheric and transition region temperatures, respectively, relative to an averaged quiet-Sun spectra. The errors represent a 1 σ dispersion. The properties of the accelerated electron spectrum and the corresponding evaporative velocities were found to be consistent with the predictions of theory.

146 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this paper, where the focus is on different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections We also discuss flare soft X-ray spectroscopy and the energetics of the process The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations

774 citations

Journal ArticleDOI
TL;DR: An overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era, is presented in this article, with the emphasis on the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory.
Abstract: We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.

558 citations

Journal ArticleDOI
TL;DR: The CHIANTI database as mentioned in this paper provides a set of atomic data for the interpretation of astrophysical spectra emitted by collisionally dominated, high temperature, optically thin sources.
Abstract: Aims. The goal of the CHIANTI atomic database is to provide a set of atomic data for the interpretation of astrophysical spectra emitted by collisionally dominated, high temperature, optically thin sources. Methods. A complete set of ground level ionization and recombination rate coefficients has been assembled for all atoms and ions of the elements of H through Zn and inserted into the latest version of the CHIANTI database, CHIANTI 6. Ionization rate coefficients are taken from the recent work of Dere (2007, A&A, 466, 771) and recombination rates from a variety of sources in the literature. These new rate coefficients have allowed the calculation of a new set of ionization equilibria and radiative loss rate coefficients. For some ions, such as Fe viii and Fe ix, there are significant differences from previous calculations. In addition, existing atomic parameters have been revised and new atomic parameters inserted into the database. Results. For each ion in the CHIANTI database, elemental abundances, ionization potentials, atomic energy levels, radiative rates, electron and proton collisional rate coefficients, ionization and recombination rate coefficients, and collisional ionization equilibrium populations are provided. In addition, parameters for the calculation of the continuum due to bremsstrahlung, radiative recombination and two-photon decay are provided. A suite of programs written in the Interactive Data Language (IDL) are available to calculate line and continuum emissivities and other properties. All data and programs are freely available at http://wwwsolar.nrl.navy.mil/ chianti

513 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the energy of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow.
Abstract: We have evaluated the energetics of 38 solar eruptive events observed by a variety of spacecraft instruments between 2002 February and 2006 December, as accurately as the observations allow. The measured energetic components include: (1) the radiated energy in the Geostationary Operational Environmental Satellite 1-8 A band, (2) the total energy radiated from the soft X-ray (SXR) emitting plasma, (3) the peak energy in the SXR-emitting plasma, (4) the bolometric radiated energy over the full duration of the event, (5) the energy in flare-accelerated electrons above 20 keV and in flare-accelerated ions above 1 MeV, (6) the kinetic and potential energies of the coronal mass ejection (CME), (7) the energy in solar energetic particles (SEPs) observed in interplanetary space, and (8) the amount of free (non-potential) magnetic energy estimated to be available in the pertinent active region. Major conclusions include: (1) the energy radiated by the SXR-emitting plasma exceeds, by about half an order of magnitude, the peak energy content of the thermal plasma that produces this radiation; (2) the energy content in flare-accelerated electrons and ions is sufficient to supply the bolometric energy radiated across all wavelengths throughout the event; (3) the energy contents of flare-accelerated electrons and ions are comparable; (4) the energy in SEPs is typically a few percent of the CME kinetic energy (measured in the rest frame of the solar wind); and (5) the available magnetic energy is sufficient to power the CME, the flare-accelerated particles, and the hot thermal plasma.

452 citations

Journal ArticleDOI
Arnold O. Benz1
01 Dec 2008
TL;DR: In this article, a review of recent observations in EUV, soft and hard X-rays, white light, and radio waves is presented, showing that solar flares remain a complex problem of astrophysics including major unsolved questions.
Abstract: Solar flares are observed at all wavelengths from decameter radio waves to gamma-rays beyond 1 GeV. This review focuses on recent observations in EUV, soft and hard X-rays, white light, and radio waves. Space missions such as RHESSI, Yohkoh, TRACE, SOHO, and more recently Hinode and SDO have enlarged widely the observational base. They have revealed a number of surprises: Coronal sources appear before the hard X-ray emission in chromospheric footpoints, major flare acceleration sites appear to be independent of coronal mass ejections, electrons, and ions may be accelerated at different sites, there are at least 3 different magnetic topologies, and basic characteristics vary from small to large flares. Recent progress also includes improved insights into the flare energy partition, on the location(s) of energy release, tests of energy release scenarios and particle acceleration. The interplay of observations with theory is important to deduce the geometry and to disentangle the various processes involved. There is increasing evidence supporting magnetic reconnection as the basic cause. While this process has become generally accepted as the trigger, it is still controversial how it converts a considerable fraction of the energy into non-thermal particles. Flare-like processes may be responsible for large-scale restructuring of the magnetic field in the corona as well as for its heating. Large flares influence interplanetary space and substantially affect the Earth’s ionosphere. Flare scenarios have slowly converged over the past decades, but every new observation still reveals major unexpected results, demonstrating that solar flares, after 150 years since their discovery, remain a complex problem of astrophysics including major unsolved questions.

408 citations