scispace - formally typeset
Search or ask a question
Author

Ryan R. Brinkman

Bio: Ryan R. Brinkman is an academic researcher from University of British Columbia. The author has contributed to research in topics: Population & Bioconductor. The author has an hindex of 50, co-authored 158 publications receiving 10822 citations. Previous affiliations of Ryan R. Brinkman include BC Cancer Research Centre & BC Cancer Agency.


Papers
More filters
Journal ArticleDOI
TL;DR: A parametric survival model based on CAG repeat length is developed to predict the probability of neurological disease onset (based on motor neurological symptoms rather than psychiatric onset) at different ages for individual patients using the largest cohort of HD patients analyzed to date.
Abstract: Huntington's disease (HD) is a neurodegenerative disorder caused by an unstable CAG repeat. For patients at risk, participating in predictive testing and learning of having CAG expansion, a major unanswered question shifts from "Will I get HD?" to "When will it manifest?" Using the largest cohort of HD patients analyzed to date (2913 individuals from 40 centers worldwide), we developed a parametric survival model based on CAG repeat length to predict the probability of neurological disease onset (based on motor neurological symptoms rather than psychiatric onset) at different ages for individual patients. We provide estimated probabilities of onset associated with CAG repeats between 36 and 56 for individuals of any age with narrow confidence intervals. For example, our model predicts a 91% chance that a 40-year-old individual with 42 repeats will have onset by the age of 65, with a 95% confidence interval from 90 to 93%. This model also defines the variability in HD onset that is not attributable to CAG length and provides information concerning CAG-related penetrance rates.

745 citations

Journal ArticleDOI
Andrea Cossarizza1, Hyun-Dong Chang, Andreas Radbruch, Andreas Acs2  +459 moreInstitutions (160)
TL;DR: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community providing the theory and key practical aspects offlow cytometry enabling immunologists to avoid the common errors that often undermine immunological data.
Abstract: These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.

698 citations

Journal ArticleDOI
TL;DR: In this article, a subpopulation of adult mouse bone marrow that is highly enriched for multilineage in vivo repopulating cells and transplanted these as single cells, or their short-term clonal progeny generated in vitro, into 352 recipients.

572 citations

Journal ArticleDOI
TL;DR: Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis.
Abstract: Traditional methods for flow cytometry (FCM) data processing rely on subjective manual gating. Recently, several groups have developed computational methods for identifying cell populations in multidimensional FCM data. The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of these methods on two tasks: (i) mammalian cell population identification, to determine whether automated algorithms can reproduce expert manual gating and (ii) sample classification, to determine whether analysis pipelines can identify characteristics that correlate with external variables (such as clinical outcome). This analysis presents the results of the first FlowCAP challenges. Several methods performed well as compared to manual gating or external variables using statistical performance measures, which suggests that automated methods have reached a sufficient level of maturity and accuracy for reliable use in FCM data analysis.

562 citations

Journal ArticleDOI
TL;DR: The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.
Abstract: The Minimum Information for Biological and Biomedical Investigations (MIBBI) project aims to foster the coordinated development of minimum-information checklists and provide a resource for those exploring the range of extant checklists.

535 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency.
Abstract: Background: Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader’s ability to evaluate critically the quality of the results presented or to repeat the experiments. Content: The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Summary: Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.

12,469 citations

Journal ArticleDOI
28 Jul 1995-Science
TL;DR: An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence of the genome from the bacterium Haemophilus influenzae Rd.
Abstract: An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism.

5,944 citations

Posted Content
TL;DR: The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance.
Abstract: UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology The result is a practical scalable algorithm that applies to real world data The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning

5,390 citations

Journal ArticleDOI
25 Oct 1996-Science
TL;DR: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration and provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history.
Abstract: The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.

4,254 citations