scispace - formally typeset
Search or ask a question
Author

Ryan R. Zonozi

Bio: Ryan R. Zonozi is an academic researcher from National Institutes of Health. The author has contributed to research in topics: Genome-wide association study & Single-nucleotide polymorphism. The author has an hindex of 2, co-authored 2 publications receiving 1873 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that an unequivocal role for common genetic variants in the etiology of typical PD and population-specific genetic heterogeneity in this disease is suggested, and supporting evidence that common variation around LRRK2 modulates risk for PD is provided.
Abstract: We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding a-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 x 10(-16)) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 x 10(-16)). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS1, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 x 10(-8)) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 x 10(-5)). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.

1,793 citations

Journal ArticleDOI
TL;DR: SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA and the 10 most significant SNPs were replicated in additional 108 MSA cases and 537 controls.
Abstract: To test whether the synucleinopathies Parkinson's disease and multiple system atrophy (MSA) share a common genetic etiology, we performed a candidate single nucleotide polymorphism (SNP) association study of the 384 most associated SNPs in a genome-wide association study of Parkinson's disease in 413 MSA cases and 3,974 control subjects. The 10 most significant SNPs were then replicated in additional 108 MSA cases and 537 controls. SNPs at the SNCA locus were significantly associated with risk for increased risk for the development of MSA (combined p = 5.5 x 10(-12); odds ratio 6.2) [corrected].

256 citations


Cited by
More filters
Journal ArticleDOI
16 Nov 2012-Science
TL;DR: It is found that in wild-type nontransgenic mice, a single intrastriatal inoculation of synthetic α- Syn fibrils led to the cell-to-cell transmission of pathologic α-Syn and Parkinson’s-like Lewy pathology in anatomically interconnected regions.
Abstract: Parkinson's disease is characterized by abundant α-synuclein (α-Syn) neuronal inclusions, known as Lewy bodies and Lewy neurites, and the massive loss of midbrain dopamine neurons. However, a cause-and-effect relationship between Lewy inclusion formation and neurodegeneration remains unclear. Here, we found that in wild-type nontransgenic mice, a single intrastriatal inoculation of synthetic α-Syn fibrils led to the cell-to-cell transmission of pathologic α-Syn and Parkinson's-like Lewy pathology in anatomically interconnected regions. Lewy pathology accumulation resulted in progressive loss of dopamine neurons in the substantia nigra pars compacta, but not in the adjacent ventral tegmental area, and was accompanied by reduced dopamine levels culminating in motor deficits. This recapitulation of a neurodegenerative cascade thus establishes a mechanistic link between transmission of pathologic α-Syn and the cardinal features of Parkinson's disease.

1,948 citations

Journal ArticleDOI
TL;DR: It is demonstrated that an unequivocal role for common genetic variants in the etiology of typical PD and population-specific genetic heterogeneity in this disease is suggested, and supporting evidence that common variation around LRRK2 modulates risk for PD is provided.
Abstract: We performed a genome-wide association study (GWAS) in 1,713 individuals of European ancestry with Parkinson's disease (PD) and 3,978 controls. After replication in 3,361 cases and 4,573 controls, we observed two strong association signals, one in the gene encoding a-synuclein (SNCA; rs2736990, OR = 1.23, P = 2.24 x 10(-16)) and another at the MAPT locus (rs393152, OR = 0.77, P = 1.95 x 10(-16)). We exchanged data with colleagues performing a GWAS in Japanese PD cases. Association to PD at SNCA was replicated in the Japanese GWAS1, confirming this as a major risk locus across populations. We replicated the effect of a new locus detected in the Japanese cohort (PARK16, rs823128, OR = 0.66, P = 7.29 x 10(-8)) and provide supporting evidence that common variation around LRRK2 modulates risk for PD (rs1491923, OR = 1.14, P = 1.55 x 10(-5)). These data demonstrate an unequivocal role for common genetic variants in the etiology of typical PD and suggest population-specific genetic heterogeneity in this disease.

1,793 citations

Journal ArticleDOI
TL;DR: An overview of current knowledge and prevailing hypotheses regarding the conformational, oligomerization and aggregation states of α-syn and their role in regulating α- synuclein function in health and disease is provided.
Abstract: Disorders characterized by α-synuclein (α-syn) accumulation, Lewy body formation and parkinsonism (and in some cases dementia) are collectively known as Lewy body diseases. The molecular mechanism (or mechanisms) through which α-syn abnormally accumulates and contributes to neurodegeneration in these disorders remains unknown. Here, we provide an overview of current knowledge and prevailing hypotheses regarding the conformational, oligomerization and aggregation states of α-syn and their role in regulating α-syn function in health and disease. Understanding the nature of the various α-syn structures, how they are formed and their relative contributions to α-syn-mediated toxicity may inform future studies aiming to develop therapeutic prevention and intervention.

1,281 citations

Journal ArticleDOI
TL;DR: The results identify two new PD susceptibility loci, show involvement of autosomal dominant parkinsonism loci in typical PD and suggest that population differences contribute to genetic heterogeneity in PD.
Abstract: To identify susceptibility variants for Parkinson's disease (PD), we performed a genome-wide association study (GWAS) and two replication studies in a total of 2,011 cases and 18,381 controls from Japan. We identified a new susceptibility locus on 1q32 (P = 1.52 x 10(-12)) and designated this as PARK16, and we also identified BST1 on 4p15 as a second new risk locus (P = 3.94 x 10(-9)). We also detected strong associations at SNCA on 4q22 (P = 7.35 x 10(-17)) and LRRK2 on 12q12 (P = 2.72 x 10(-8)), both of which are implicated in autosomal dominant forms of parkinsonism. By comparing results of a GWAS performed on individuals of European ancestry, we identified PARK16, SNCA and LRRK2 as shared risk loci for PD and BST1 and MAPT as loci showing population differences. Our results identify two new PD susceptibility loci, show involvement of autosomal dominant parkinsonism loci in typical PD and suggest that population differences contribute to genetic heterogeneity in PD.

1,206 citations

Journal ArticleDOI
TL;DR: The relevance of Lewy's discovery 100 years ago for the current understanding of PD and related disorders is reviewed.
Abstract: In 1817, James Parkinson described the symptoms of the shaking palsy, a disease that was subsequently defined in greater detail, and named after Parkinson, by Jean-Martin Charcot. Parkinson expected that the publication of his monograph would lead to a rapid elucidation of the anatomical substrate of the shaking palsy; in the event, this process took almost a century. In 1912, Fritz Heinrich Lewy identified the protein aggregates that define Parkinson disease (PD) in some brain regions outside the substantia nigra. In 1919, Konstantin Nikolaevich Tretiakoff found similar aggregates in the substantia nigra and named them after Lewy. In the 1990s, α-synuclein was identified as the main constituent of the Lewy pathology, and its aggregation was shown to be central to PD, dementia with Lewy bodies, and multiple system atrophy. In 2003, a staging scheme for idiopathic PD was introduced, according to which α-synuclein pathology originates in the dorsal motor nucleus of the vagal nerve and progresses from there to other brain regions, including the substantia nigra. In this article, we review the relevance of Lewy's discovery 100 years ago for the current understanding of PD and related disorders.

925 citations